Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Expert knowledge-infused deep learning for automatic lung nodule detection

Expert knowledge-infused deep learning for automatic lung nodule detection BACKGROUND:Computer aided detection (CADe) of pulmonary nodules from computed tomography (CT) is crucial for early diagnosis of lung cancer. Self-learned features obtained by training datasets via deep learning have facilitated CADe of the nodules. However, the complexity of CT lung images renders a challenge of extracting effective features by self-learning only. This condition is exacerbated for limited size of datasets. On the other hand, the engineered features have been widely studied.OBJECTIVE:We proposed a novel nodule CADe which aims to relieve the challenge by the use of available engineered features to prevent convolution neural networks (CNN) from overfitting under dataset limitation and reduce the running-time complexity of self-learning.METHODS:The CADe methodology infuses adequately the engineered features, particularly texture features, into the deep learning process.RESULTS:The methodology was validated on 208 patients with at least one juxta-pleural nodule from the public LIDC-IDRI database. Results demonstrated that the methodology achieves a sensitivity of 88% with 1.9 false positives per scan and a sensitivity of 94.01% with 4.01 false positives per scan.CONCLUSIONS:The methodology shows high performance compared with the state-of-the-art results, in terms of accuracy and efficiency, from both existing CNN-based approaches and engineered feature-based classifications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of X-Ray Science and Technology IOS Press

Expert knowledge-infused deep learning for automatic lung nodule detection

Loading next page...
 
/lp/ios-press/expert-knowledge-infused-deep-learning-for-automatic-lung-nodule-Embh234ETn

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
IOS Press
Copyright
Copyright © 2019 © 2019 – IOS Press and the authors. All rights reserved
ISSN
0895-3996
eISSN
1095-9114
DOI
10.3233/XST-180426
Publisher site
See Article on Publisher Site

Abstract

BACKGROUND:Computer aided detection (CADe) of pulmonary nodules from computed tomography (CT) is crucial for early diagnosis of lung cancer. Self-learned features obtained by training datasets via deep learning have facilitated CADe of the nodules. However, the complexity of CT lung images renders a challenge of extracting effective features by self-learning only. This condition is exacerbated for limited size of datasets. On the other hand, the engineered features have been widely studied.OBJECTIVE:We proposed a novel nodule CADe which aims to relieve the challenge by the use of available engineered features to prevent convolution neural networks (CNN) from overfitting under dataset limitation and reduce the running-time complexity of self-learning.METHODS:The CADe methodology infuses adequately the engineered features, particularly texture features, into the deep learning process.RESULTS:The methodology was validated on 208 patients with at least one juxta-pleural nodule from the public LIDC-IDRI database. Results demonstrated that the methodology achieves a sensitivity of 88% with 1.9 false positives per scan and a sensitivity of 94.01% with 4.01 false positives per scan.CONCLUSIONS:The methodology shows high performance compared with the state-of-the-art results, in terms of accuracy and efficiency, from both existing CNN-based approaches and engineered feature-based classifications.

Journal

Journal of X-Ray Science and TechnologyIOS Press

Published: Jan 1, 2019

There are no references for this article.