Access the full text.
Sign up today, get DeepDyve free for 14 days.
Advancement in bridge design/construction technologies altered typical bridge parameters utilized in the development of AASHTO LRFD live-load distribution factors developed more than two decades ago. A girder bridge constructed using high-performance, high-strength concrete has been instrumented and tested under controlled-load condition. AASHTO LRFD distribution factors were compared to the factors computed from girders measured strains. AASHTO LRFD distribution factors were on average 21% higher than computed factors. A detailed finite element model (FEM) was developed and calibrated to match the controlled load test results. Several variations of the FEM were created to account for the presence of end & intermediate diaphragms, girders continuity, and bridge skewness. The addition of end diaphragms decreases distribution factors on average by 6% while addition of intermediate diaphragms redistributes the moments between interior and exterior girders. Effect of diaphragms was more evident for bridge with large skew angles and less significant for skew angles less than 20°. Bridges with skewness have decreased distribution factors which was evident for skew angle in excess of 20°; AASHTO LRFD has good estimates of skewness effect on distribution factors. Considering the continuity effect in the calibrated FEM revealed that AASHTO LRFD distribution factors are overestimated on average by 17%.
Bridge Structures – IOS Press
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.