Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, time-dependent deflections, stresses and internal forces in prestressed concrete box-girder bridges due to creep of concrete are investigated. Simple equations, correlated with a step-by-step numerical simulation analysis, are developed to calculate long-term behavior of segmentally erected prestressed concrete box-girder bridges built by the balanced-cantilever method. Three-dimensional finite-element models of the mentioned bridges, including effects of the load history, material nonlinearity, creep and aging of concrete, were developed using ABAQUS software. The three-dimensional shell elements are used for modeling box-girder walls, while Rebar elements are used for modeling prestressing tendons. The step-by-step procedure allows the simulation of the construction stages, effects of time-dependent deformations of materials and changes in the bridges’ structural system. Different examples of bridges, built by the balanced- cantilever method, are studied over a 30-year duration. Practical equations are modified to calculate time-dependent deflections and redistribution of internal stresses and forces in bridges constructed by the balanced-cantilever method, and good agreements between the results of the proposed method and numerical analysis are found. Significant time-dependent effects on bridge deflections and redistribution of internal forces and stresses are observed.
Bridge Structures – IOS Press
Published: Jan 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.