Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Direct evaluation of fatigue property of ultra-high molecular weight polyethylene components of retrieved knee implants using small specimens

Direct evaluation of fatigue property of ultra-high molecular weight polyethylene components of... Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as a bearing surface of joint implants. Since wear of UHMWPE component has been the primal cause of implant failure, crosslinking of UHMWPE is now widely used to improve its wear property. On the other hand, crosslinking degrades its fatigue property and increase of fatigue related failure, such as delamination, is possible. However, the relationship between degraded fatigue property and implant failure is not clear, primarily because the fatigue properties of failed and retrieved UHMWPE components are not known. In this study, we propose a new test method to evaluate the fatigue property of retrieved UHMWPE components or final products using small specimens. First, the effects of test conditions were investigated using virgin UHMWPE. Then, tests were repeated using specimens from UHMWPE components of retrieved knee implants. The fatigue properties of virgin and retrieved UHMWPE were successfully evaluated by the new test method and a relationship was found among the extent of oxidation, the fatigue property, and occurrence of delamination. This result suggested that evaluation of fatigue property of UHMWPE component can predict the occurrence of fatigue related implant failure during operation in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Strength, Fracture and Complexity IOS Press

Direct evaluation of fatigue property of ultra-high molecular weight polyethylene components of retrieved knee implants using small specimens

Loading next page...
 
/lp/ios-press/direct-evaluation-of-fatigue-property-of-ultra-high-molecular-weight-mJYNkD7qYk

References (14)

Publisher
IOS Press
Copyright
Copyright © 2010 by IOS Press, Inc
ISSN
1567-2069
eISSN
1875-9262
DOI
10.3233/SFC-2010-0109
Publisher site
See Article on Publisher Site

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as a bearing surface of joint implants. Since wear of UHMWPE component has been the primal cause of implant failure, crosslinking of UHMWPE is now widely used to improve its wear property. On the other hand, crosslinking degrades its fatigue property and increase of fatigue related failure, such as delamination, is possible. However, the relationship between degraded fatigue property and implant failure is not clear, primarily because the fatigue properties of failed and retrieved UHMWPE components are not known. In this study, we propose a new test method to evaluate the fatigue property of retrieved UHMWPE components or final products using small specimens. First, the effects of test conditions were investigated using virgin UHMWPE. Then, tests were repeated using specimens from UHMWPE components of retrieved knee implants. The fatigue properties of virgin and retrieved UHMWPE were successfully evaluated by the new test method and a relationship was found among the extent of oxidation, the fatigue property, and occurrence of delamination. This result suggested that evaluation of fatigue property of UHMWPE component can predict the occurrence of fatigue related implant failure during operation in vivo.

Journal

Strength, Fracture and ComplexityIOS Press

Published: Jan 1, 2010

There are no references for this article.