Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Forward Modeling of Solar Coronal Magnetic-field Measurements Based on a Magnetic-field-induced Transition in Fe x

Forward Modeling of Solar Coronal Magnetic-field Measurements Based on a Magnetic-field-induced... It was recently proposed that the intensity ratios of several extreme ultraviolet spectral lines from Fe x ions can be used to measure the solar coronal magnetic field based on magnetic-field-induced transition (MIT) theory. To verify the suitability of this method, we performed forward modeling with a three-dimensional radiation magnetohydrodynamic model of a solar active region. Intensities of several spectral lines from Fe x were synthesized from the model. Based on MIT theory, the intensity ratios of the MIT line Fe x 257 Å to several other Fe x lines were used to derive magnetic-field strengths, which were then compared with the field strengths in the model. We also developed a new method to simultaneously estimate the coronal density and temperature from the Fe x 174/175 and 184/345 Å line ratios. Using these estimates, we demonstrated that the MIT technique can provide reasonably accurate measurements of the coronal magnetic field in both on-disk and off-limb solar observations. Our investigation suggests that a spectrometer that can simultaneously observe the Fe x 174, 175, 184, 257, and 345 Å lines and allow an accurate radiometric calibration for these lines is highly desired to achieve reliable measurements of the coronal magnetic field. We have also evaluated the impact of the uncertainty in the Fe x 3p4 3d 4D5/2 and 4D7/2 energy difference on the magnetic-field measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Astrophysical Journal IOP Publishing

Forward Modeling of Solar Coronal Magnetic-field Measurements Based on a Magnetic-field-induced Transition in Fe x

Forward Modeling of Solar Coronal Magnetic-field Measurements Based on a Magnetic-field-induced Transition in Fe x

The Astrophysical Journal , Volume 920 (2): 15 – Oct 1, 2021

Abstract

It was recently proposed that the intensity ratios of several extreme ultraviolet spectral lines from Fe x ions can be used to measure the solar coronal magnetic field based on magnetic-field-induced transition (MIT) theory. To verify the suitability of this method, we performed forward modeling with a three-dimensional radiation magnetohydrodynamic model of a solar active region. Intensities of several spectral lines from Fe x were synthesized from the model. Based on MIT theory, the intensity ratios of the MIT line Fe x 257 Å to several other Fe x lines were used to derive magnetic-field strengths, which were then compared with the field strengths in the model. We also developed a new method to simultaneously estimate the coronal density and temperature from the Fe x 174/175 and 184/345 Å line ratios. Using these estimates, we demonstrated that the MIT technique can provide reasonably accurate measurements of the coronal magnetic field in both on-disk and off-limb solar observations. Our investigation suggests that a spectrometer that can simultaneously observe the Fe x 174, 175, 184, 257, and 345 Å lines and allow an accurate radiometric calibration for these lines is highly desired to achieve reliable measurements of the coronal magnetic field. We have also evaluated the impact of the uncertainty in the Fe x 3p4 3d 4D5/2 and 4D7/2 energy difference on the magnetic-field measurements.

Loading next page...
 
/lp/iop-publishing/forward-modeling-of-solar-coronal-magnetic-field-measurements-based-on-akobjv30U8

References (72)

Publisher
IOP Publishing
Copyright
© 2021. The American Astronomical Society. All rights reserved.
ISSN
0004-637X
eISSN
1538-4357
DOI
10.3847/1538-4357/ac1792
Publisher site
See Article on Publisher Site

Abstract

It was recently proposed that the intensity ratios of several extreme ultraviolet spectral lines from Fe x ions can be used to measure the solar coronal magnetic field based on magnetic-field-induced transition (MIT) theory. To verify the suitability of this method, we performed forward modeling with a three-dimensional radiation magnetohydrodynamic model of a solar active region. Intensities of several spectral lines from Fe x were synthesized from the model. Based on MIT theory, the intensity ratios of the MIT line Fe x 257 Å to several other Fe x lines were used to derive magnetic-field strengths, which were then compared with the field strengths in the model. We also developed a new method to simultaneously estimate the coronal density and temperature from the Fe x 174/175 and 184/345 Å line ratios. Using these estimates, we demonstrated that the MIT technique can provide reasonably accurate measurements of the coronal magnetic field in both on-disk and off-limb solar observations. Our investigation suggests that a spectrometer that can simultaneously observe the Fe x 174, 175, 184, 257, and 345 Å lines and allow an accurate radiometric calibration for these lines is highly desired to achieve reliable measurements of the coronal magnetic field. We have also evaluated the impact of the uncertainty in the Fe x 3p4 3d 4D5/2 and 4D7/2 energy difference on the magnetic-field measurements.

Journal

The Astrophysical JournalIOP Publishing

Published: Oct 1, 2021

There are no references for this article.