Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Generalized Bessel functions in incommensurate structure analysis

Generalized Bessel functions in incommensurate structure analysis The analysis of incommensurate structures is computationally more difficult than that of normal ones. This is mainly a result of the structure-factor expression, which involves numerical integrations or infinite series of Bessel functions. Both approaches have been implemented in existing computer programs. Compact analytical expressions are known for special cases only. Recently, a new theory of generalized Bessel functions has been developed. The number of theoretical results and applications is increasing rapidly. Numerical properties and algorithms are being studied. A possible application of the generalized Bessel functions for incommensurate structure analysis is proposed. These functions can be used to derive analytical expressions for structure factors and all partial derivatives for a wide class of incommensurate crystals. The existing programs can be improved by taking into account some interesting numerical and analytical properties of these new functions, like recurrence relations, analytical expressions for derivatives, generating functions and integral representations. A new class of special functions, suitable for dealing with incommensurate structures in a more analytical way, is emerging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Crystallographica Section A: Foundations of Crystallography International Union of Crystallography

Generalized Bessel functions in incommensurate structure analysis

Generalized Bessel functions in incommensurate structure analysis


Abstract

The analysis of incommensurate structures is computationally more difficult than that of normal ones. This is mainly a result of the structure-factor expression, which involves numerical integrations or infinite series of Bessel functions. Both approaches have been implemented in existing computer programs. Compact analytical expressions are known for special cases only. Recently, a new theory of generalized Bessel functions has been developed. The number of theoretical results and applications is increasing rapidly. Numerical properties and algorithms are being studied. A possible application of the generalized Bessel functions for incommensurate structure analysis is proposed. These functions can be used to derive analytical expressions for structure factors and all partial derivatives for a wide class of incommensurate crystals. The existing programs can be improved by taking into account some interesting numerical and analytical properties of these new functions, like recurrence relations, analytical expressions for derivatives, generating functions and integral representations. A new class of special functions, suitable for dealing with incommensurate structures in a more analytical way, is emerging.

Loading next page...
 
/lp/international-union-of-crystallography/generalized-bessel-functions-in-incommensurate-structure-analysis-G0FM4yctUI

References (3)

Publisher
International Union of Crystallography
Copyright
Copyright (c) 1994 International Union of Crystallography
ISSN
0108-7673
eISSN
1600-5724
DOI
10.1107/S0108767393008037
Publisher site
See Article on Publisher Site

Abstract

The analysis of incommensurate structures is computationally more difficult than that of normal ones. This is mainly a result of the structure-factor expression, which involves numerical integrations or infinite series of Bessel functions. Both approaches have been implemented in existing computer programs. Compact analytical expressions are known for special cases only. Recently, a new theory of generalized Bessel functions has been developed. The number of theoretical results and applications is increasing rapidly. Numerical properties and algorithms are being studied. A possible application of the generalized Bessel functions for incommensurate structure analysis is proposed. These functions can be used to derive analytical expressions for structure factors and all partial derivatives for a wide class of incommensurate crystals. The existing programs can be improved by taking into account some interesting numerical and analytical properties of these new functions, like recurrence relations, analytical expressions for derivatives, generating functions and integral representations. A new class of special functions, suitable for dealing with incommensurate structures in a more analytical way, is emerging.

Journal

Acta Crystallographica Section A: Foundations of CrystallographyInternational Union of Crystallography

Published: Mar 1, 1994

There are no references for this article.