Access the full text.
Sign up today, get DeepDyve free for 14 days.
Exchange rate has been always a focal point for researchers within international scope. Globalisation and the role of exchange rate create a challenging market where short-term prediction is concerned. The ability to predict the exchange rate is a challenging topic for professionals and practitioners. This paper proposes a method to address the current issues of predicting the market changes using characteristics of financial time series. The main idea is that neural network and support vector machine (SVM) approaches are employed to train and test the results in different instances. Findings indicate the superiority of correct sets over incorrect, while criteria sets had been sometimes better results. Furthermore, linear kernel was more likely to encounter convergence problems than other types which oppose to primary dataset. Finally, the accuracy of the proposed prediction methods is analysed and compared with related works.
International Journal of Electronic Finance – Inderscience Publishers
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.