Access the full text.
Sign up today, get DeepDyve free for 14 days.
In the last years, non-destructive techniques based on ambient vibration data have been developed in order to estimate the modal parameters (natural frequencies and mode shapes) of buildings. They have been performed mainly by using the accelerometers data of slender buildings. The present paper illustrates an assessment of identification techniques, applied to the numerical results of a finite element (FE) model obtained for a reinforced concrete frame building. The frame, with a four storey configuration, has been designed in accordance with the actual Italian seismic guidelines which respect the provisions of the Eurocodes. Several tests have been conducted in order to determine a suitable procedure that can permit to identify, from the data of virtual accelerometers placed on the building model, the relevant correct modal parameters. This procedure may permit to identify the correct number of accelerometers and their position within the structure, in order to guarantee a good frequency identification in real conditions in terms of external excitement.
International Journal of Structural Engineering – Inderscience Publishers
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.