Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Various illumination invariant face recognition approaches have been proposed in the past. However, the issue that still remains unaddressed to a large extent is the applicability of such techniques in practical environment where computational costs and time are crucial factors in deciding the implementation and use of a face recognition system. To deal with these issues, the paper presents a technique to achieve high recognition performance using robust methodologies for feature extraction and classification which at the same time are also quick in delivering results. Features from accelerated segment test are used to identify the fiducial points. To boost the stability of the method, the conventionally used ID3 algorithm has been improved by using non-extensive entropy instead of Renyi entropy. Further, a classification method using Inner Product Classifier based on t-norms is applied which uses the errors between training features and test image features which are evaluated using the triangular/t-norms. Keywords: features from accelerated segment test; FAST; T-norm; ID3; fiducial points; frank T-norm. Reference to this paper should be made as follows: Bhat, A. (2016) ` for illumination invariant face recognition', Int. J. Biometrics, Vol. 8, Nos. 3/4, pp.301312. Biographical notes: Aruna Bhat is a Research Scholar at
International Journal of Biometrics – Inderscience Publishers
Published: Jan 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.