Access the full text.
Sign up today, get DeepDyve free for 14 days.
In Group Key Exchange (GKE) protocols, users usually extract the group key using some auxiliary (ephemeral) secret information generated during the execution. Strong corruptions are attacks by which an adversary can reveal these ephemeral secrets, in addition to the possibly used long-lived keys. Undoubtedly, security impact of strong corruptions is serious, and thus specifying appropriate security requirements and designing secure GKE protocols appears an interesting yet challenging task – the aim of our article. We start by investigating the current setting of strong corruptions and derive some refinements like opening attacks that allow to reveal ephemeral secrets of users without their long-lived keys. This allows to consider even stronger attacks against honest, but 'opened' users. Further, we define strong security goals for GKE protocols in the presence of such powerful adversaries and propose a 3-round GKE protocol, named TDH1, which remains immune to their attacks under standard cryptographic assumptions. Our security definitions allow adversaries to register users and specify their long-lived keys, thus, in particular capture attacks of malicious insiders for the appropriate security goals such as Mutual Authentication, key confirmation, contributiveness, key control and key-replication resilience.
International Journal of Applied Cryptography – Inderscience Publishers
Published: Jan 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.