Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper demonstrates that metaheuristic algorithms can provide a useful general framework for estimating both linear and nonlinear econometric models. Two metaheuristic algorithms - firefly and accelerated particle swarm optimisation - are employed in the context of several quantile regression models. The algorithms are stable and robust to the choice of starting values and the presence of various complications (e.g., non–differentiability, parameter restrictions, discontinuity, possible multimodality, etc.). Two comparative studies involving an autoregressive model and a conditional scale autoregressive conditional heteroscedasticity model, demonstrate the performance of metaheuristic algorithms relative to existing approaches. In addition, the paper presents an application to consumption behaviour in which the presence of constraints makes existing techniques difficult to implement, but metaheuristic algorithms are straightforward to apply. The findings indicate that marginal propensity to consume is highest in quarter 3 for each of the sample years. However, pre– and post–recession comparisons reveal interesting asymmetries in consumption behaviour.
International Journal of Computational Economics and Econometrics – Inderscience Publishers
Published: Jan 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.