Access the full text.
Sign up today, get DeepDyve free for 14 days.
In order to recommend friends in a real sense based on the personalised needs of users. A personalised recommendation algorithm based on two-dimensional correlation (FRBOT) was proposed for social network. In the proposed model, the interest similarity and trust relationship among users were combined with probability matrix decomposition to analyse the potential factor characteristics of the same preferences of selected trust users and target users. Compared with general matrix decomposition algorithm and personalised recommendation method based on user trust, the algorithm has evident advantages and can improve user satisfaction. The experimental results show that the performance of the proposed friend recommendation method is significantly improved compared with that of the existing friend recommendation methods.
International Journal of Autonomous and Adaptive Communications Systems – Inderscience Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.