Access the full text.
Sign up today, get DeepDyve free for 14 days.
Modern applications such as web knowledge bases, network traffic monitoring and online social networks involve an unprecedented amount of ‘heterogeneous’ network data, with rich types of interactions among nodes. How can we find patterns and anomalies for heterogeneous networks with millions of edges that have high dimensional attributes, in a scalable way? We introduce MultiAspectForensics , a novel tool to automatically detect and visualise bursts of specific sub-graph patterns within a local community of nodes as anomalies in a heterogeneous network, leveraging scalable tensor analysis methods. One such pattern consists of a set of vertices that form a dense bipartite graph, whose edges share exactly the same set of attributes. We present empirical results of the proposed method on three datasets from distinct application domains, and discuss insights derived from these patterns discovered. Moreover, we empirically show that our algorithm can be feasibly applied to higher dimensional datasets.
International Journal of Web Engineering and Technology – Inderscience Publishers
Published: Jan 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.