Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Improved thermal management of structures – a simplified mathematical approach

Improved thermal management of structures – a simplified mathematical approach This paper considers the management of buildings for fire safety. It is found that fire and the associated effects on buildings is significantly different to other forms of loading such as gravity live loads, wind and earthquakes and their respective effects on the building structure. Fire events are derived from the human activities within buildings or from the malfunction of mechanical and electrical equipment provided within buildings to achieve a serviceable environment. It is therefore possible to directly influence the rate of fire starts within buildings by changing human behaviour, improved maintenance and improved design of mechanical and electrical systems. Furthermore, should a fire develops, it is possible to directly influence the resulting fire severity by the incorporation of fire safety systems such as sprinklers and to provide measures within the building to enable safer egress from the building. The ability to influence the rate of fire starts and the resulting fire severity is unique to the consideration of fire within buildings since other loads such as wind and earthquakes are directly a function of nature. The possible approaches for designing a building for fire safety are presented using an example of a multi-storey building constructed over a railway line. The design of both the transfer structure supporting the building over the railway and the levels above the transfer structure are considered in the context of current regulatory requirements. The principles and assumptions associated with various approaches are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Structural Engineering Inderscience Publishers

Improved thermal management of structures – a simplified mathematical approach

Loading next page...
 
/lp/inderscience-publishers/improved-thermal-management-of-structures-a-simplified-mathematical-RIuF0tPamx
Publisher
Inderscience Publishers
Copyright
Copyright © Inderscience Enterprises Ltd. All rights reserved
ISSN
1758-7328
eISSN
1758-7336
DOI
10.1504/IJStructE.2011.039421
Publisher site
See Article on Publisher Site

Abstract

This paper considers the management of buildings for fire safety. It is found that fire and the associated effects on buildings is significantly different to other forms of loading such as gravity live loads, wind and earthquakes and their respective effects on the building structure. Fire events are derived from the human activities within buildings or from the malfunction of mechanical and electrical equipment provided within buildings to achieve a serviceable environment. It is therefore possible to directly influence the rate of fire starts within buildings by changing human behaviour, improved maintenance and improved design of mechanical and electrical systems. Furthermore, should a fire develops, it is possible to directly influence the resulting fire severity by the incorporation of fire safety systems such as sprinklers and to provide measures within the building to enable safer egress from the building. The ability to influence the rate of fire starts and the resulting fire severity is unique to the consideration of fire within buildings since other loads such as wind and earthquakes are directly a function of nature. The possible approaches for designing a building for fire safety are presented using an example of a multi-storey building constructed over a railway line. The design of both the transfer structure supporting the building over the railway and the levels above the transfer structure are considered in the context of current regulatory requirements. The principles and assumptions associated with various approaches are discussed.

Journal

International Journal of Structural EngineeringInderscience Publishers

Published: Jan 1, 2011

There are no references for this article.