Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

IBE and function-private IBE under linear assumptions with shorter ciphertexts and private keys, and extensions

IBE and function-private IBE under linear assumptions with shorter ciphertexts and private keys,... Many identity-based encryption schemes under the k-LIN assumption contain 2k + 1 group elements in the ciphertext overhead and private keys. In this paper, we push the limit further by constructing an IBE scheme under the k-LIN assumption with 2k group elements in the ciphertext overhead and private keys. The schemes have variants with shorter public parameters under the k-SCasc assumption, which is a close assumption to k-LIN. Furthermore, via additional refinements, we also put efforts in reducing the public parameter size of our schemes, under either k-LIN or k-SCasc. While we mainly consider securities in the standard model for our schemes, we also show how to make relatively more efficient schemes secure in the random oracle model. Our technique additionally expands to the scheme of Boneh et al. (CRYPTO 2013) to yield more efficient function-private IBE under the 2-LIN (aka, DLIN) assumption. Overall, the shortened size in ciphertexts and private keys inherently leads to fewer exponentiations and pairings in encryption and decryption, and hence yields schemes with better computational efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Applied Cryptography Inderscience Publishers

IBE and function-private IBE under linear assumptions with shorter ciphertexts and private keys, and extensions

Loading next page...
 
/lp/inderscience-publishers/ibe-and-function-private-ibe-under-linear-assumptions-with-shorter-yYm1P0LuyH

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Inderscience Publishers
Copyright
Copyright © Inderscience Enterprises Ltd
ISSN
1753-0563
eISSN
1753-0571
DOI
10.1504/IJACT.2017.086224
Publisher site
See Article on Publisher Site

Abstract

Many identity-based encryption schemes under the k-LIN assumption contain 2k + 1 group elements in the ciphertext overhead and private keys. In this paper, we push the limit further by constructing an IBE scheme under the k-LIN assumption with 2k group elements in the ciphertext overhead and private keys. The schemes have variants with shorter public parameters under the k-SCasc assumption, which is a close assumption to k-LIN. Furthermore, via additional refinements, we also put efforts in reducing the public parameter size of our schemes, under either k-LIN or k-SCasc. While we mainly consider securities in the standard model for our schemes, we also show how to make relatively more efficient schemes secure in the random oracle model. Our technique additionally expands to the scheme of Boneh et al. (CRYPTO 2013) to yield more efficient function-private IBE under the 2-LIN (aka, DLIN) assumption. Overall, the shortened size in ciphertexts and private keys inherently leads to fewer exponentiations and pairings in encryption and decryption, and hence yields schemes with better computational efficiency.

Journal

International Journal of Applied CryptographyInderscience Publishers

Published: Jan 1, 2017

There are no references for this article.