Access the full text.
Sign up today, get DeepDyve free for 14 days.
In Crypto 1997, Goldreich, Goldwasser and Halevi (GGH) proposed a lattice analogue of McEliece public key cryptosystem, in which security is related to the hardness of approximating the Closest Vector Problem in a lattice. Furthermore, they also described how to use the same principle of their encryption scheme to provide a signature scheme. Practically, this cryptosystem uses the Euclidean norm, l2-norm, which has been used in many algorithms based on lattice theory. Nonetheless, many drawbacks have been studied and these could lead to cryptanalysis of the scheme. In this article, we present a novel method of reducing a vector under the l∞-norm and propose a digital signature scheme based on it. Our scheme takes advantage of the l∞-norm to increase the resistance of the GGH scheme and to decrease the signature length. Furthermore, after some other improvements, we obtain a very efficient signature scheme, that trades the security level, speed and space.
International Journal of Applied Cryptography – Inderscience Publishers
Published: Jan 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.