Access the full text.
Sign up today, get DeepDyve free for 14 days.
Simulated annealing algorithms are widely used for solving NP-hard combinatorial optimisation problems including the travelling salesman problem (TSP). This article presents results of an empirical investigation for estimating the melting temperature for the simulated annealing algorithm based on the objective function value. We limit our search to Chebyshev order-picking systems with unequal horizontal and vertical speeds. The article utilises 90 randomly generated order-picking problems with densities ranging from 10 to 800 stops per tour. For each investigated problem, we utilise different seed values to generate and to solve ten replicates of the problem. Results show that quality melting temperature values can be estimated based on the statistical characteristics of the search space. This study helps to arrive at quality solutions with significantly fewer re-evaluations of the objective function.
International Journal of Business Performance and Supply Chain Modelling – Inderscience Publishers
Published: Jan 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.