Access the full text.
Sign up today, get DeepDyve free for 14 days.
In order to realise the accurate and automatic detection of optical switch network (OSN) content vulnerability, an automatic detection method of OSN content vulnerability based on big data analysis is proposed. First, build OSN content vulnerability big data distribution model. Then, the detection statistics of its big data distribution are established. The association rule feature quantity of statistical time series is extracted for the data, and the association rule item of OSN content vulnerability is analysed by principal component analysis (PCA). Finally, fuzzy information clustering method is used to detect the location of OSN content vulnerability. The simulation results show that the method has the advantages of high precision, strong anti-interference ability and low time cost, and improves the safety and leakage-proof capability of the OSN content.
International Journal of Autonomous and Adaptive Communications Systems – Inderscience Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.