Access the full text.
Sign up today, get DeepDyve free for 14 days.
The only known way to achieve attribute-based fully homomorphic encryption (ABFHE) is through indistinguishability obfuscation. The best we can do at the moment without obfuscation is attribute-based levelled FHE which allows circuits of an a priori bounded depth to be evaluated. This has been achieved from the learning with errors (LWE) assumption. However we know of no other way without obfuscation of constructing a scheme that can evaluate circuits of unbounded depth. In this paper, we present an ABFHE scheme that can evaluate circuits of unbounded depth but with one limitation: there is a bound N on the number of inputs that can be used in a circuit evaluation. The bound N could be thought of as a bound on the number of independent senders. Our scheme allows N to be exponentially large so we can set the parameters so that there is no limitation on the number of inputs in practice. Our construction relies on multi-key FHE and levelled ABFHE, both of which have been realised from LWE, and therefore we obtain a concrete scheme that is secure under LWE.
International Journal of Applied Cryptography – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.