Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper proposes a switching feature-based model that leverages the needs of both new and existing users for recommendation of tourist locations. In an attempt to solve the cold-start problem, recommendations to new users are implemented with Bayesian algorithm on supplied demographic data. For existing users, the system switches to the collaborative filtering subsystem, where recommendation results are produced using Pearson correlation computation and offered based on the items in the database. The model was validated with discounted cumulative gain, precision, and recall. A comparative analysis with some existing systems showed lower mean absolute error. Experimental results obtained from the survey of different categories of users showed the effectiveness of the proposed techniques.
International Journal of Information and Decision Sciences – Inderscience Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.