Access the full text.
Sign up today, get DeepDyve free for 14 days.
Machine learning techniques have become attractive due to their robustness and superiority in predicting future behaviour in various areas. This paper is aimed to predict future stock prices by applying a nonlinear autoregressive network with exogenous inputs (NARX) and support vector regression (SVR). For this aim, we use the daily trade data, including highest price, lowest price, closing price, and trade volume for the stocks with the highest transaction volumes from Borsa Istanbul (BIST). In order to evaluate the performance of the prediction models, various statistical measures are used. The experimental results indicate that the techniques used are quite capable of predicting the future price of a stock. Moreover, both methods are competitive with each other and have superiorities in different aspects.
International Journal of Computational Economics and Econometrics – Inderscience Publishers
Published: Jan 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.