Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease

Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced... Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease <meta name="citation_title" content="Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease" /> //// Hindawi Publishing Corporation Home Journals About Us About this Journal Submit a Manuscript Table of Contents Journal Menu Abstracting and Indexing Aims and Scope Annual Issues Article Processing Charges Articles in Press Author Guidelines Bibliographic Information Contact Information Editorial Board Editorial Workflow Free eTOC Alerts Reviewers Acknowledgment Subscription Information Open Focus Issues Published Focus Issues Focus Issue Guidelines Open Special Issues Published Special Issues Special Issue Guidelines Abstract Full-Text PDF Full-Text HTML Linked References How to Cite this Article Journal of Oncology Volume 2008 (2008), Article ID 626340, 6 pages doi:10.1155/2008/626340 Research Article Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease Thomas C. Wehler , 1 Claudine Graf , 1 Stefan Biesterfeld , 2 Walburgis Brenner , 3 Jörg Schadt , 4,5 Ines Gockel , 4,5 Martin R. Berger , 6 Joachim W. Thüroff , 3 Peter R. Galle , 7 Markus Moehler , 5,7 and Carl C. Schimanski 5,7 1 Third Department of Internal Medicine, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany 2 Institute of Pathology, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 3 Department of Urology, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 4 Institute of Surgery, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 5 Interdisciplinary Translational Oncological Laboratory (ITOL), Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 6 Unit of Toxicology and Chemotherapy, German Cancer Research Center, 69120 Heidelberg, Germany 7 First Department of Internal Medicine, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany Received 20 May 2008; Revised 9 September 2008; Accepted 29 September 2008 Academic Editor: Meenhard Herlyn Copyright © 2008 Thomas C. Wehler et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR 4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR 4 expression on the progression of human renal cell carcinoma. CXCR 4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR 4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR 4 expression. Strong CXCR 4 expression of renal cell carcinoma was significantly associated with advanced T-status ( 𝑃 = . 0 3 9 ), tumor dedifferentiation ( P = .0005), and low hemoglobin ( P = .039). In summary, strong CXCR 4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma. 1. Introduction Renal cell carcinoma (RCC) is the sixth leading cause of cancer-related deaths in the Western world and comprises 2-3% of all newly diagnosed malignancies in adults. Among the different kidney neoplasms, it represents with 85% the largest fraction [ 1 ]. The age-adjusted incidence of RCC in Western nations is 5–12/100 000 in women or men, respectively, with a peak incidence in the 6th decade [ 2 ]. In practice, the only curable treatment is nephrectomy performed in early stages of the disease. However, about 30–50% of patients have already metastases at presentation, and approximately one third of the nephrectomized patients relapse and progress with metastatic disease. The preferential sites of metastasis are the regional lymph nodes, the lung, the liver, and the bones. Survival strongly depends on the tumor stage at presentation. The 5-year survival rate is approximately 50%, whereas the median survival in case of metastasis is less than one year [ 3 – 5 ]. The current standard treatment for metastasized RCC consists of the application of IFN - 𝛼 and IL -2 [ 6 ]. Recently, phase II clinical trials using receptor-tyrosine kinase ( RTK ) inhibitors have shown more promising results and lead to approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) [ 2 ]. In vivo and in vitro results from different tumor entities suggest that organ-specific metastasis is partially governed by interactions of chemokine receptors on cancer cells and their corresponding chemokines expressed in target organs and the tumor bed. This process is considered to direct lymphatic and hematogenous spread and furthermore influences the sites of metastatic growth [ 7 ]. Chemokines and their respective G-protein-coupled receptors were initially described to mediate different pro- and anti-inflammatory responses [ 8 ]. In particular, the high expression of stromal cell derived factor 1 𝛼 ( SDF -1 𝛼 ), also known as CXCL 12, by endothelial cells, biliary epithelial cells, bone marrow stromal cells, and lymph nodes results in a chemotactic gradient attracting CXCR 4 expressing lymphocytes into those organs [ 9 – 15 ]. Most recently, CXCR 4 has shifted into focus as it is the most common chemokine receptor expressed on cancer cells [ 16 ]. It was suggested to play an important role in tumor spread of colorectal, breast, and oral squamous cell carcinoma as all of them commonly metastasize to SDF -1 𝛼 expressing organs [ 17 – 20 ]. Data obtained from in vitro as well as from murine in vivo models, analyzing the metastatic ability of CXCR 4 in expressing cancer cells, underlined the key role of CXCR 4 for tumor cell malignancy, as activation of CXCR 4 by SDF -1 𝛼 induced migration, invasion, and angiogenesis of cancer cells [ 21 – 23 ]. Therefore, we evaluated the expression of CXCR 4 in renal cancer cell lines and specimens and correlated these results with the patients’ clinicopathological parameters and survival. 2. Materials and Methods 2.1. Tissue Samples Renal cell carcinoma samples were intraoperatively obtained from 113 patients with renal clear cell carcinoma who underwent surgery at the Department of Urology of the University of Mainz. The morphological classification of the carcinomas was conducted according to World Health Organization (WHO) specifications. Patients were followed up on a regular basis depending on the procedure performed. 2.2. Immunohistochemical Staining The avidin-biotin-complex method (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany) was used to detect the protein CXCR 4 (anti- CXCR 4, dilution 1 : 300; Capralogics Inc., Mass, USA). Formalin-fixed and paraffin-embedded tissues were deparaffinized and subsequently microwaved (600 W, 15 minutes) in citrate buffer (ph 6.0). After preincubation with hydrogen peroxide (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany) and human AB plasma (Department of Transfusion, University of Mainz, Mainz, Germany), the primary antibodies were applied for one hour at room temperature. After incubation with the secondary antibody (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany), the avidin-biotin complex was added and the enzyme activity was visualized with diaminobenzidine (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany). Counterstaining was performed with haematoxylin (Roth, Karlsruhe, Germany). For negative controls only the secondary antibody was used. A negative control was performed for each sample ( 𝑁 = 1 1 3 ) . For positive controls formalin-fixed and paraffin-embedded tissue samples of the human spleen were applied. 2.3. Evaluation of Immunostaining Immunostaining was evaluated by three authors independently (T.C. Wehler, C. Graf, S. Biesterfeld), blinded to patient outcome and all clinicopathologic findings. The immunohistochemical staining was analyzed according to a scoring method as previously validated and described [ 17 ]. The tumors were classified into four groups based on the homogeneous staining intensity: 0, absent; 1, weak; 2, intermediate; 3, strong staining. In the case of heterogeneous staining within the same sample, the respective higher score was chosen, if more than 50% of cells revealed a higher staining intensity. If expression intensity was exactly in between two scores, the authors agreed on 0.5 point-steps. If evaluations did not agree, specimens were re-evaluated and reclassified according to the assessment given most frequently by the observers. 2.4. Statistics The correlation of CXCR 4 staining intensity with clinicopathological patterns was assessed with the 𝜒 2 test and with the unpaired Student t -test (one/two sided), when appropriate. Survival rates were visualized applying Kaplan-Meier curves, and P -values were determined by log-rank test. 𝑃 < . 0 5 was considered significant and 𝑃 < . 0 0 1 highly significant in all statistical analyses. 3. Results 3.1. Tumor Characteristics and Patient Profiles The selected group of patients represents the typical characteristics of renal cell carcinoma in industrialized countries. 3.2. Immunohistochemical Staining of CXCR 4 in Renal Cell Carcinoma The staining of normal human kidney tissue for CXCR 4 revealed a cytoplasmatic expression and in only few specimens an additional weak membranous location of CXCR 4 (see Figure 1 ). A nuclear staining of CXCR 4 was not observed. In renal cell carcinoma, the respective expression rate for CXCR 4 was 100% (113/113) and varied from weak (34%), intermediate (42%), to strong (24%). Negative controls of human renal cancer remained negative for all tissue samples ( 𝑁 = 1 1 3 , not shown). Glomeruli did not reveal any CXCR 4 expression and thus served as internal negative control. As internal positive control, splenic lymphocytes (strong CXCR 4 expression) and tubuli cells (intermediate CXCR 4 expression) were used. Similarly, inflammatory infiltrates in kidney tissue (data not shown) depicted a strong CXCR 4 expression. Figure 1: The figure depicts CXCR 4 expression in healthy kidney and cancer samples. While glomeruli did not depict any CXCR 4 expression, tubuli did reveal a medium-strong predominantly cytoplasmic CXCR 4 expression. All cancer samples did reveal a cytoplasmatic expression of CXCR 4 ranging from weak (34%) to medium (42%) and strong (24%). 3.3. Relevance of CXCR 4 Expression in Renal Cell Carcinoma Strong CXCR 4 expression significantly correlated with dedifferentiated ( 𝑃 = . 0 0 0 5 ) and progressed renal cell carcinoma, indicated by T-status ( 𝑃 = . 0 3 9 ; see Table 1 ). Furthermore, strong CXCR 4 expression revealed a significant association with low hemoglobin values ( 𝑃 = . 0 3 9 ) and a nonsignificant trend towards increased thrombocytes ( 𝑃 = . 0 8 9 / 𝑃 = . 1 8 , resp.). No correlation was seen for age, size, survival, or creatinine values. Table 1: Patient and tumor characteristics dependent on intensity of CXCR 4 expression. 4. Discussion The expression of the chemokine receptor CXCR 4 has been reported in various epithelial, mesenchymal, and hematopoietic tumors. In several entities, its expression was linked to tumor dissemination and poor prognosis [ 20 , 24 , 25 ]. CXCR 4 expression can be increased as a result of intracellular second messengers such as calcium [ 26 ] and cyclic AMP [ 27 , 28 ] by the inactivation of the tumor suppressor gene p 53 and overexpression of NF 𝜅 B [ 29 – 31 ], by cytokines like IL -2, IL -10, or TGF -1 𝛽 [ 26 , 32 ] and by growth factors such as VEGF and EGF [ 33 , 34 ]. In addition, Staller and colleagues could demonstrate that CXCR 4 is a hypoxia inducible gene with a HIF -1 𝛼 binding domain, and that its overexpression in clear-cell renal cell carcinoma is due to a loss-of-function of the von Hippel-Lindau ( VHL ) tumor suppressor protein, which under normoxic conditions directs HIF -1 𝛼 to ubiquitin -mediated degradation [ 35 ]. Loss of VHL stabilizes HIF -1 𝛼 leading to increased expression of hypoxia-response genes including VEGFA , CXCR4, its ligand SDF 1 𝛼 , and HIF -1 𝛼 itself [ 36 , 37 ]. They also reported a positive correlation between strong CXCR 4 expression and poor tumor-specific survival independent of tumor stage and differentiation grade. The latter is in contrast to the results obtained in our study. We analyzed the expression profile of CXCR 4 in a series of human renal cell carcinoma cell lines and 113 patients’ samples for which exact tumor staging and followup data were available and correlated the expression profile with clinicopathological data. The human renal cell carcinoma tumor samples that are analyzed revealed varying intensities of CXCR 4 expression ranging from weak to strong, as previously described for pancreatic and colorectal cancer [ 38 ]. Interestingly, CXCR 4 expression was downregulated in 34% and upregulated in 24% of renal cell carcinoma as compared to original tubuli cells. 42% of cancers revealed the identical expression intensity of CXCR 4 as tubuli cells. A cytoplasmatic staining of CXCR 4 was observed in all cancers, whereas fewer cases depicted an additional membranous localization of CXCR 4. These observations are in line with a recently published study by Zagzag and coworkers [ 44 ]. Furthermore, it was reported that CXCR 4 surface expression was higher in permanent cell lines than in primary tumor samples [ 39 ]. Noteworthy, an inducible translocation of CXCR 4 from the cytoplasm to the membrane has been reported previously in [ 29 ]. In addition, at least in breast cancer cells, inhibited CXCR 4 ubiquitination was described as another mechanism contributing to increased CXCR 4 surface levels [ 40 ]. In our renal cell carcinoma patients, a strong CXCR 4 expression was significantly associated as well with progressed cancer as indicated by the T-status as with dedifferentiation. Our results are furthermore in line with recent reports from our group and others, describing a similar effect of CXCR 4 on disease progression in other tumor entities [ 17 , 41 ]. Hence, our data suggest a relevant influence of CXCR 4 on proliferation and differentiation of renal cell carcinoma with regard to the in vivo situation. This hypothesis is strengthened by observations in a murine model, where the metastatic capability of CXCR 4-expressing RCC cells strongly correlated with CXCR 4 protein level on cancer cells and the SDF -1 𝛼 expression in the target organs [ 23 ]. Therefore, CXCR 4-expressing cancer cells are certainly attracted to the typical “homing organs” such as lungs, bone marrow, liver, and lymph-nodes showing a high SDF-1 𝛼 expression [ 13 , 42 ]. A pathophysiological relevant fact worthwhile to be mentioned is that endothelial cells coexpress SDF -1 𝛼 and VCAM -1, thus mediating tumor-cell/endothelial cell attachment. CXCR 4 activation by SDF -1 𝛼 induces 𝛽 -integrin expression, binding VCAM -1 on endothelial cell [ 43 , 44 ]. Similar pathophysiological processes must be proposed for renal cell carcinoma dissemination. Therefore, CXCR 4 might be an interesting therapeutic target in a multimodal therapy of renal clear cell carcinoma. Abbreviations CXCR4: Chemokine receptor 4 EMEA: European Medicines Agency FDA: Food and Drug Administration HIF: Hypoxia induced factor IL: Interleukin RCC: Renal cell carcinoma RTK: Receptor-tyrosine kinases SDF-1 α : Stromal cell derived factor 1 𝛼 VHL: Von Hippel Lindau WHO: World health organization. Acknowledgment The authors thank the Sparkasse Pforzheim-Calw, Pforzheim, Germany, for supporting their work. <h4>References</h4> M. Allinen, R. Beroukhim, L. Cai, et al., “ Molecular characterization of the tumor microenvironment in breast cancer ,” Cancer Cell , vol. 6, no. 1, pp. 17–32, 2004. R. J. Amato, “Chemotherapy for renal cell carcinoma,” Seminars in Oncology , vol. 27, no. 2, pp. 177–186, 2000. M. Arya and H. R. H. Patel, “Expanding role of chemokines and their receptors in cancer,” Expert Review of Anticancer Therapy , vol. 3, no. 6, pp. 749–752, 2003. M. Baggiolini, “ Chemokines and leukocyte traffic ,” Nature , vol. 392, no. 6676, pp. 565–568, 1998. F. Balkwill and A. Mantovani, “ Inflammation and cancer: back to Virchow? ,” The Lancet , vol. 357, no. 9255, pp. 539–545, 2001. C. C. Bleul, J. L. Schultze, and T. A. Springer, “ B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement ,” Journal of Experimental Medicine , vol. 187, no. 5, pp. 753–762, 1998. C. Brigati, D. M. Noonan, A. Albini, and R. Benelli, “ Tumors and inflammatory infiltrates: friends or foes? ,” Clinical and Experimental Metastasis , vol. 19, no. 3, pp. 247–258, 2002. M. Burger, A. Glodek, T. Hartmann, et al., “ Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells ,” Oncogene , vol. 22, no. 50, pp. 8093–8101, 2003. A. R. Cardones, T. Murakami, and S. T. Hwang, “CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via β 1 integrin,” Cancer Research , vol. 63, no. 20, pp. 6751–6757, 2003. S. R. Chinni, S. Sivalogan, Z. Dong, et al., “ CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12 ,” Prostate , vol. 66, no. 1, pp. 32–48, 2006. A. D. Cristillo, H. C. Highbarger, R. L. Dewar, D. S. Dimitrov, H. Golding, and B. E. Bierer, “ Up-regulation of HIV coreceptor CXCR4 expression in human T lymphocytes is mediated in part by a cAMP-responsive element ,” FASEB Journal , vol. 16, no. 3, pp. 354–364, 2002. L. Hao, C. Zhang, Y. Qiu, et al., “ Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer ,” Cancer Letters , vol. 253, no. 1, pp. 34–42, 2007. G. Helbig, K. W. Christopherson, II, P. Bhat-Nakshatri, et al., “ NF- κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4 ,” The Journal of Biological Chemistry , vol. 278, no. 24, pp. 21631–21638, 2003. K. Jöhrer, C. Zelle-Rieser, A. Perathoner, et al., “ Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma ,” Clinical Cancer Research , vol. 11, no. 7, pp. 2459–2465, 2005. M. Kato, J. Kitayama, S. Kazama, and H. Nagawa, “Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma,” Breast Cancer Research , vol. 5, no. 5, pp. R144–R150, 2003. S. H. Landis, T. Murray, S. Bolden, and P. A. Wingo, “ Cancer statistics, 1999 ,” CA: A Cancer Journal for Clinicians , vol. 49, no. 1, pp. 8–31, 1999. C. Laverdiere, B. H. Hoang, R. Yang, et al., “ Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma ,” Clinical Cancer Research , vol. 11, no. 7, pp. 2561–2567, 2005. Y. M. Li, Y. Pan, Y. Wei, et al., “ Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis ,” Cancer Cell , vol. 6, no. 5, pp. 459–469, 2004. M. A. Maynard and M. Ohh, “ von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer ,” American Journal of Nephrology , vol. 24, no. 1, pp. 1–13, 2004. S. A. Mehta, K. W. Christopherson, H. E. Broxmeyer, L. Kopelovich, R. J. Goulet, Jr., and H. Nakshatri, “Understanding the metastatic switch in breast cancer: role of tumor suppressor p53 on expression of CXCR4, a chemokine receptor involved in site-specific metastasis,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #3331, 2004. T. Mori, R. Doi, M. Koizumi, et al., “CXCR4 antagonist inhibits stromall cell-derived factor 1-induced migration and invasion of human pancreatic cancer,” Molecular Cancer Therapeutics , vol. 3, no. 1, pp. 29–37, 2004. M. Moriuchi, H. Moriuchi, W. Turner, and A. S. Fauci, “Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry,” The Journal of Immunology , vol. 159, no. 9, pp. 4322–4329, 1997. R. J. Motzer, N. H. Bander, and D. M. Nanus, “ Renal-cell carcinoma ,” The New England Journal of Medicine , vol. 335, no. 12, pp. 865–875, 1996. R. J. Motzer, J. Bacik, and M. Mazumdar, “ Prognostic factors for survival of patients with stage IV renal cell carcinoma: memorial Sloan-Kettering Cancer Center experience ,” Clinical Cancer Research , vol. 10, no. 18, pp. 6302s–6303s, 2004. C. Murdoch, “ CXCR4: chemokine receptor extraordinaire ,” Immunological Reviews , vol. 177, no. 1, pp. 175–184, 2000. J. Pan, J. Mestas, M. D. Burdick, et al., “ Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis ,” Molecular Cancer , vol. 5, article 56, pp. 1–14, 2006. P. H. Patel, R. S. K. Chaganti, and R. J. Motzer, “ Targeted therapy for metastatic renal cell carcinoma ,” British Journal of Cancer , vol. 94, no. 5, pp. 614–619, 2006. R. J. Phillips, M. D. Burdick, M. Lutz, J. A. Belperio, M. P. Keane, and R. M. Strieter, “ The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases ,” American Journal of Respiratory and Critical Care Medicine , vol. 167, no. 12, pp. 1676–1686, 2003. R. J. Phillips, J. Mestas, M. Gharaee-Kermani, et al., “ Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1 α ,” The Journal of Biological Chemistry , vol. 280, no. 23, pp. 22473–22481, 2005. B. A. Premack and T. J. Schall, “ Chemokine receptors: gateways to inflammation and infection ,” Nature Medicine , vol. 2, no. 11, pp. 1174–1178, 1996. C. L. Richard, E. Y. Tan, and J. Blay, “Adenosin increases cell-surface CXCR4 expression on HT-29 human colorectal carcinoma cells,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #3330, 2004. S. A. Rosenberg, M. T. Lotze, L. M. Muul, et al., “A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone,” The New England Journal of Medicine , vol. 316, no. 15, pp. 889–897, 1987. R. Salcedo, K. Wasserman, H. A. Young, et al., “Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1 α ,” American Journal of Pathology , vol. 154, no. 4, pp. 1125–1135, 1999. C. C. Schimanski, S. Schwald, N. Simiantonaki, et al., “ Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer ,” Clinical Cancer Research , vol. 11, no. 5, pp. 1743–1750, 2005. P. Staller, J. Sulitkova, J. Lisztwan, H. Moch, E. J. Oakeley, and W. Krek, “ Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL ,” Nature , vol. 425, no. 6955, pp. 307–311, 2003. W. G. Stetler-Stevenson, “The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis,” Surgical Oncology Clinics of North America , vol. 10, no. 2, pp. 383–392, 2001. R. Terada, K. Yamamoto, T. Hakoda, et al., “Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases,” Laboratory Investigation , vol. 83, no. 5, pp. 665–672, 2003. D. D. Twitchell, N. R. London, Jr., D. P. Tomer, S. Tomer, B. K. Murray, and K. L. O'Neill, “Tannic acid prevents angiogenesis in vivo by inhibiting CXCR4/SDF-1 alpha binding in breast cancer cells,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #51, 2004. D. Uchida, N.-M. Begum, A. Almofti, et al., “ Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma ,” Experimental Cell Research , vol. 290, no. 2, pp. 289–302, 2003. O. Wald, O. Pappo, R. Safadi, et al., “ Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus ,” European Journal of Immunology , vol. 34, no. 4, pp. 1164–1174, 2004. J. Wang, E. Guan, G. Roderiquez, V. Calvert, R. Alvarez, and M. A. Norcross, “ Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages ,” The Journal of Biological Chemistry , vol. 276, no. 52, pp. 49236–49243, 2001. T. Wehler, F. Wolfert, C. C. Schimanski, et al., “Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease,” Oncology Reports , vol. 16, no. 6, pp. 1159–1164, 2006. L. Yang, E. Jackson, B. M. Woerner, A. Perry, D. Piwnica-Worms, and J. B. Rubin, “ Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo ,” Cancer Research , vol. 67, no. 2, pp. 651–658, 2007. D. Zagzag, B. Krishnamachary, H. Yee, et al., “ Stromal cell-derived factor-1 α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor ,” Cancer Research , vol. 65, no. 14, pp. 6178–6188, 2005. // http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Oncology Hindawi Publishing Corporation

Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease

Loading next page...
 
/lp/hindawi-publishing-corporation/strong-expression-of-chemokine-receptor-cxcr-4-by-renal-cell-carcinoma-rJuIIE60UX

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Hindawi Publishing Corporation
Copyright
Copyright © 2008 Thomas C. Wehler et al.
ISSN
1687-8450
eISSN
1687-8469
Publisher site
See Article on Publisher Site

Abstract

Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease <meta name="citation_title" content="Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease" /> //// Hindawi Publishing Corporation Home Journals About Us About this Journal Submit a Manuscript Table of Contents Journal Menu Abstracting and Indexing Aims and Scope Annual Issues Article Processing Charges Articles in Press Author Guidelines Bibliographic Information Contact Information Editorial Board Editorial Workflow Free eTOC Alerts Reviewers Acknowledgment Subscription Information Open Focus Issues Published Focus Issues Focus Issue Guidelines Open Special Issues Published Special Issues Special Issue Guidelines Abstract Full-Text PDF Full-Text HTML Linked References How to Cite this Article Journal of Oncology Volume 2008 (2008), Article ID 626340, 6 pages doi:10.1155/2008/626340 Research Article Strong Expression of Chemokine Receptor CXCR 4 by Renal Cell Carcinoma Correlates with Advanced Disease Thomas C. Wehler , 1 Claudine Graf , 1 Stefan Biesterfeld , 2 Walburgis Brenner , 3 Jörg Schadt , 4,5 Ines Gockel , 4,5 Martin R. Berger , 6 Joachim W. Thüroff , 3 Peter R. Galle , 7 Markus Moehler , 5,7 and Carl C. Schimanski 5,7 1 Third Department of Internal Medicine, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany 2 Institute of Pathology, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 3 Department of Urology, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 4 Institute of Surgery, Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 5 Interdisciplinary Translational Oncological Laboratory (ITOL), Johannes Gutenberg University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany 6 Unit of Toxicology and Chemotherapy, German Cancer Research Center, 69120 Heidelberg, Germany 7 First Department of Internal Medicine, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany Received 20 May 2008; Revised 9 September 2008; Accepted 29 September 2008 Academic Editor: Meenhard Herlyn Copyright © 2008 Thomas C. Wehler et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR 4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR 4 expression on the progression of human renal cell carcinoma. CXCR 4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR 4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR 4 expression. Strong CXCR 4 expression of renal cell carcinoma was significantly associated with advanced T-status ( 𝑃 = . 0 3 9 ), tumor dedifferentiation ( P = .0005), and low hemoglobin ( P = .039). In summary, strong CXCR 4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma. 1. Introduction Renal cell carcinoma (RCC) is the sixth leading cause of cancer-related deaths in the Western world and comprises 2-3% of all newly diagnosed malignancies in adults. Among the different kidney neoplasms, it represents with 85% the largest fraction [ 1 ]. The age-adjusted incidence of RCC in Western nations is 5–12/100 000 in women or men, respectively, with a peak incidence in the 6th decade [ 2 ]. In practice, the only curable treatment is nephrectomy performed in early stages of the disease. However, about 30–50% of patients have already metastases at presentation, and approximately one third of the nephrectomized patients relapse and progress with metastatic disease. The preferential sites of metastasis are the regional lymph nodes, the lung, the liver, and the bones. Survival strongly depends on the tumor stage at presentation. The 5-year survival rate is approximately 50%, whereas the median survival in case of metastasis is less than one year [ 3 – 5 ]. The current standard treatment for metastasized RCC consists of the application of IFN - 𝛼 and IL -2 [ 6 ]. Recently, phase II clinical trials using receptor-tyrosine kinase ( RTK ) inhibitors have shown more promising results and lead to approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) [ 2 ]. In vivo and in vitro results from different tumor entities suggest that organ-specific metastasis is partially governed by interactions of chemokine receptors on cancer cells and their corresponding chemokines expressed in target organs and the tumor bed. This process is considered to direct lymphatic and hematogenous spread and furthermore influences the sites of metastatic growth [ 7 ]. Chemokines and their respective G-protein-coupled receptors were initially described to mediate different pro- and anti-inflammatory responses [ 8 ]. In particular, the high expression of stromal cell derived factor 1 𝛼 ( SDF -1 𝛼 ), also known as CXCL 12, by endothelial cells, biliary epithelial cells, bone marrow stromal cells, and lymph nodes results in a chemotactic gradient attracting CXCR 4 expressing lymphocytes into those organs [ 9 – 15 ]. Most recently, CXCR 4 has shifted into focus as it is the most common chemokine receptor expressed on cancer cells [ 16 ]. It was suggested to play an important role in tumor spread of colorectal, breast, and oral squamous cell carcinoma as all of them commonly metastasize to SDF -1 𝛼 expressing organs [ 17 – 20 ]. Data obtained from in vitro as well as from murine in vivo models, analyzing the metastatic ability of CXCR 4 in expressing cancer cells, underlined the key role of CXCR 4 for tumor cell malignancy, as activation of CXCR 4 by SDF -1 𝛼 induced migration, invasion, and angiogenesis of cancer cells [ 21 – 23 ]. Therefore, we evaluated the expression of CXCR 4 in renal cancer cell lines and specimens and correlated these results with the patients’ clinicopathological parameters and survival. 2. Materials and Methods 2.1. Tissue Samples Renal cell carcinoma samples were intraoperatively obtained from 113 patients with renal clear cell carcinoma who underwent surgery at the Department of Urology of the University of Mainz. The morphological classification of the carcinomas was conducted according to World Health Organization (WHO) specifications. Patients were followed up on a regular basis depending on the procedure performed. 2.2. Immunohistochemical Staining The avidin-biotin-complex method (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany) was used to detect the protein CXCR 4 (anti- CXCR 4, dilution 1 : 300; Capralogics Inc., Mass, USA). Formalin-fixed and paraffin-embedded tissues were deparaffinized and subsequently microwaved (600 W, 15 minutes) in citrate buffer (ph 6.0). After preincubation with hydrogen peroxide (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany) and human AB plasma (Department of Transfusion, University of Mainz, Mainz, Germany), the primary antibodies were applied for one hour at room temperature. After incubation with the secondary antibody (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany), the avidin-biotin complex was added and the enzyme activity was visualized with diaminobenzidine (LSAB+ System-HRP Kit, Dako Cytomation, Hamburg, Germany). Counterstaining was performed with haematoxylin (Roth, Karlsruhe, Germany). For negative controls only the secondary antibody was used. A negative control was performed for each sample ( 𝑁 = 1 1 3 ) . For positive controls formalin-fixed and paraffin-embedded tissue samples of the human spleen were applied. 2.3. Evaluation of Immunostaining Immunostaining was evaluated by three authors independently (T.C. Wehler, C. Graf, S. Biesterfeld), blinded to patient outcome and all clinicopathologic findings. The immunohistochemical staining was analyzed according to a scoring method as previously validated and described [ 17 ]. The tumors were classified into four groups based on the homogeneous staining intensity: 0, absent; 1, weak; 2, intermediate; 3, strong staining. In the case of heterogeneous staining within the same sample, the respective higher score was chosen, if more than 50% of cells revealed a higher staining intensity. If expression intensity was exactly in between two scores, the authors agreed on 0.5 point-steps. If evaluations did not agree, specimens were re-evaluated and reclassified according to the assessment given most frequently by the observers. 2.4. Statistics The correlation of CXCR 4 staining intensity with clinicopathological patterns was assessed with the 𝜒 2 test and with the unpaired Student t -test (one/two sided), when appropriate. Survival rates were visualized applying Kaplan-Meier curves, and P -values were determined by log-rank test. 𝑃 < . 0 5 was considered significant and 𝑃 < . 0 0 1 highly significant in all statistical analyses. 3. Results 3.1. Tumor Characteristics and Patient Profiles The selected group of patients represents the typical characteristics of renal cell carcinoma in industrialized countries. 3.2. Immunohistochemical Staining of CXCR 4 in Renal Cell Carcinoma The staining of normal human kidney tissue for CXCR 4 revealed a cytoplasmatic expression and in only few specimens an additional weak membranous location of CXCR 4 (see Figure 1 ). A nuclear staining of CXCR 4 was not observed. In renal cell carcinoma, the respective expression rate for CXCR 4 was 100% (113/113) and varied from weak (34%), intermediate (42%), to strong (24%). Negative controls of human renal cancer remained negative for all tissue samples ( 𝑁 = 1 1 3 , not shown). Glomeruli did not reveal any CXCR 4 expression and thus served as internal negative control. As internal positive control, splenic lymphocytes (strong CXCR 4 expression) and tubuli cells (intermediate CXCR 4 expression) were used. Similarly, inflammatory infiltrates in kidney tissue (data not shown) depicted a strong CXCR 4 expression. Figure 1: The figure depicts CXCR 4 expression in healthy kidney and cancer samples. While glomeruli did not depict any CXCR 4 expression, tubuli did reveal a medium-strong predominantly cytoplasmic CXCR 4 expression. All cancer samples did reveal a cytoplasmatic expression of CXCR 4 ranging from weak (34%) to medium (42%) and strong (24%). 3.3. Relevance of CXCR 4 Expression in Renal Cell Carcinoma Strong CXCR 4 expression significantly correlated with dedifferentiated ( 𝑃 = . 0 0 0 5 ) and progressed renal cell carcinoma, indicated by T-status ( 𝑃 = . 0 3 9 ; see Table 1 ). Furthermore, strong CXCR 4 expression revealed a significant association with low hemoglobin values ( 𝑃 = . 0 3 9 ) and a nonsignificant trend towards increased thrombocytes ( 𝑃 = . 0 8 9 / 𝑃 = . 1 8 , resp.). No correlation was seen for age, size, survival, or creatinine values. Table 1: Patient and tumor characteristics dependent on intensity of CXCR 4 expression. 4. Discussion The expression of the chemokine receptor CXCR 4 has been reported in various epithelial, mesenchymal, and hematopoietic tumors. In several entities, its expression was linked to tumor dissemination and poor prognosis [ 20 , 24 , 25 ]. CXCR 4 expression can be increased as a result of intracellular second messengers such as calcium [ 26 ] and cyclic AMP [ 27 , 28 ] by the inactivation of the tumor suppressor gene p 53 and overexpression of NF 𝜅 B [ 29 – 31 ], by cytokines like IL -2, IL -10, or TGF -1 𝛽 [ 26 , 32 ] and by growth factors such as VEGF and EGF [ 33 , 34 ]. In addition, Staller and colleagues could demonstrate that CXCR 4 is a hypoxia inducible gene with a HIF -1 𝛼 binding domain, and that its overexpression in clear-cell renal cell carcinoma is due to a loss-of-function of the von Hippel-Lindau ( VHL ) tumor suppressor protein, which under normoxic conditions directs HIF -1 𝛼 to ubiquitin -mediated degradation [ 35 ]. Loss of VHL stabilizes HIF -1 𝛼 leading to increased expression of hypoxia-response genes including VEGFA , CXCR4, its ligand SDF 1 𝛼 , and HIF -1 𝛼 itself [ 36 , 37 ]. They also reported a positive correlation between strong CXCR 4 expression and poor tumor-specific survival independent of tumor stage and differentiation grade. The latter is in contrast to the results obtained in our study. We analyzed the expression profile of CXCR 4 in a series of human renal cell carcinoma cell lines and 113 patients’ samples for which exact tumor staging and followup data were available and correlated the expression profile with clinicopathological data. The human renal cell carcinoma tumor samples that are analyzed revealed varying intensities of CXCR 4 expression ranging from weak to strong, as previously described for pancreatic and colorectal cancer [ 38 ]. Interestingly, CXCR 4 expression was downregulated in 34% and upregulated in 24% of renal cell carcinoma as compared to original tubuli cells. 42% of cancers revealed the identical expression intensity of CXCR 4 as tubuli cells. A cytoplasmatic staining of CXCR 4 was observed in all cancers, whereas fewer cases depicted an additional membranous localization of CXCR 4. These observations are in line with a recently published study by Zagzag and coworkers [ 44 ]. Furthermore, it was reported that CXCR 4 surface expression was higher in permanent cell lines than in primary tumor samples [ 39 ]. Noteworthy, an inducible translocation of CXCR 4 from the cytoplasm to the membrane has been reported previously in [ 29 ]. In addition, at least in breast cancer cells, inhibited CXCR 4 ubiquitination was described as another mechanism contributing to increased CXCR 4 surface levels [ 40 ]. In our renal cell carcinoma patients, a strong CXCR 4 expression was significantly associated as well with progressed cancer as indicated by the T-status as with dedifferentiation. Our results are furthermore in line with recent reports from our group and others, describing a similar effect of CXCR 4 on disease progression in other tumor entities [ 17 , 41 ]. Hence, our data suggest a relevant influence of CXCR 4 on proliferation and differentiation of renal cell carcinoma with regard to the in vivo situation. This hypothesis is strengthened by observations in a murine model, where the metastatic capability of CXCR 4-expressing RCC cells strongly correlated with CXCR 4 protein level on cancer cells and the SDF -1 𝛼 expression in the target organs [ 23 ]. Therefore, CXCR 4-expressing cancer cells are certainly attracted to the typical “homing organs” such as lungs, bone marrow, liver, and lymph-nodes showing a high SDF-1 𝛼 expression [ 13 , 42 ]. A pathophysiological relevant fact worthwhile to be mentioned is that endothelial cells coexpress SDF -1 𝛼 and VCAM -1, thus mediating tumor-cell/endothelial cell attachment. CXCR 4 activation by SDF -1 𝛼 induces 𝛽 -integrin expression, binding VCAM -1 on endothelial cell [ 43 , 44 ]. Similar pathophysiological processes must be proposed for renal cell carcinoma dissemination. Therefore, CXCR 4 might be an interesting therapeutic target in a multimodal therapy of renal clear cell carcinoma. Abbreviations CXCR4: Chemokine receptor 4 EMEA: European Medicines Agency FDA: Food and Drug Administration HIF: Hypoxia induced factor IL: Interleukin RCC: Renal cell carcinoma RTK: Receptor-tyrosine kinases SDF-1 α : Stromal cell derived factor 1 𝛼 VHL: Von Hippel Lindau WHO: World health organization. Acknowledgment The authors thank the Sparkasse Pforzheim-Calw, Pforzheim, Germany, for supporting their work. <h4>References</h4> M. Allinen, R. Beroukhim, L. Cai, et al., “ Molecular characterization of the tumor microenvironment in breast cancer ,” Cancer Cell , vol. 6, no. 1, pp. 17–32, 2004. R. J. Amato, “Chemotherapy for renal cell carcinoma,” Seminars in Oncology , vol. 27, no. 2, pp. 177–186, 2000. M. Arya and H. R. H. Patel, “Expanding role of chemokines and their receptors in cancer,” Expert Review of Anticancer Therapy , vol. 3, no. 6, pp. 749–752, 2003. M. Baggiolini, “ Chemokines and leukocyte traffic ,” Nature , vol. 392, no. 6676, pp. 565–568, 1998. F. Balkwill and A. Mantovani, “ Inflammation and cancer: back to Virchow? ,” The Lancet , vol. 357, no. 9255, pp. 539–545, 2001. C. C. Bleul, J. L. Schultze, and T. A. Springer, “ B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement ,” Journal of Experimental Medicine , vol. 187, no. 5, pp. 753–762, 1998. C. Brigati, D. M. Noonan, A. Albini, and R. Benelli, “ Tumors and inflammatory infiltrates: friends or foes? ,” Clinical and Experimental Metastasis , vol. 19, no. 3, pp. 247–258, 2002. M. Burger, A. Glodek, T. Hartmann, et al., “ Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells ,” Oncogene , vol. 22, no. 50, pp. 8093–8101, 2003. A. R. Cardones, T. Murakami, and S. T. Hwang, “CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via β 1 integrin,” Cancer Research , vol. 63, no. 20, pp. 6751–6757, 2003. S. R. Chinni, S. Sivalogan, Z. Dong, et al., “ CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12 ,” Prostate , vol. 66, no. 1, pp. 32–48, 2006. A. D. Cristillo, H. C. Highbarger, R. L. Dewar, D. S. Dimitrov, H. Golding, and B. E. Bierer, “ Up-regulation of HIV coreceptor CXCR4 expression in human T lymphocytes is mediated in part by a cAMP-responsive element ,” FASEB Journal , vol. 16, no. 3, pp. 354–364, 2002. L. Hao, C. Zhang, Y. Qiu, et al., “ Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer ,” Cancer Letters , vol. 253, no. 1, pp. 34–42, 2007. G. Helbig, K. W. Christopherson, II, P. Bhat-Nakshatri, et al., “ NF- κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4 ,” The Journal of Biological Chemistry , vol. 278, no. 24, pp. 21631–21638, 2003. K. Jöhrer, C. Zelle-Rieser, A. Perathoner, et al., “ Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma ,” Clinical Cancer Research , vol. 11, no. 7, pp. 2459–2465, 2005. M. Kato, J. Kitayama, S. Kazama, and H. Nagawa, “Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma,” Breast Cancer Research , vol. 5, no. 5, pp. R144–R150, 2003. S. H. Landis, T. Murray, S. Bolden, and P. A. Wingo, “ Cancer statistics, 1999 ,” CA: A Cancer Journal for Clinicians , vol. 49, no. 1, pp. 8–31, 1999. C. Laverdiere, B. H. Hoang, R. Yang, et al., “ Messenger RNA expression levels of CXCR4 correlate with metastatic behavior and outcome in patients with osteosarcoma ,” Clinical Cancer Research , vol. 11, no. 7, pp. 2561–2567, 2005. Y. M. Li, Y. Pan, Y. Wei, et al., “ Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis ,” Cancer Cell , vol. 6, no. 5, pp. 459–469, 2004. M. A. Maynard and M. Ohh, “ von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer ,” American Journal of Nephrology , vol. 24, no. 1, pp. 1–13, 2004. S. A. Mehta, K. W. Christopherson, H. E. Broxmeyer, L. Kopelovich, R. J. Goulet, Jr., and H. Nakshatri, “Understanding the metastatic switch in breast cancer: role of tumor suppressor p53 on expression of CXCR4, a chemokine receptor involved in site-specific metastasis,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #3331, 2004. T. Mori, R. Doi, M. Koizumi, et al., “CXCR4 antagonist inhibits stromall cell-derived factor 1-induced migration and invasion of human pancreatic cancer,” Molecular Cancer Therapeutics , vol. 3, no. 1, pp. 29–37, 2004. M. Moriuchi, H. Moriuchi, W. Turner, and A. S. Fauci, “Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry,” The Journal of Immunology , vol. 159, no. 9, pp. 4322–4329, 1997. R. J. Motzer, N. H. Bander, and D. M. Nanus, “ Renal-cell carcinoma ,” The New England Journal of Medicine , vol. 335, no. 12, pp. 865–875, 1996. R. J. Motzer, J. Bacik, and M. Mazumdar, “ Prognostic factors for survival of patients with stage IV renal cell carcinoma: memorial Sloan-Kettering Cancer Center experience ,” Clinical Cancer Research , vol. 10, no. 18, pp. 6302s–6303s, 2004. C. Murdoch, “ CXCR4: chemokine receptor extraordinaire ,” Immunological Reviews , vol. 177, no. 1, pp. 175–184, 2000. J. Pan, J. Mestas, M. D. Burdick, et al., “ Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis ,” Molecular Cancer , vol. 5, article 56, pp. 1–14, 2006. P. H. Patel, R. S. K. Chaganti, and R. J. Motzer, “ Targeted therapy for metastatic renal cell carcinoma ,” British Journal of Cancer , vol. 94, no. 5, pp. 614–619, 2006. R. J. Phillips, M. D. Burdick, M. Lutz, J. A. Belperio, M. P. Keane, and R. M. Strieter, “ The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases ,” American Journal of Respiratory and Critical Care Medicine , vol. 167, no. 12, pp. 1676–1686, 2003. R. J. Phillips, J. Mestas, M. Gharaee-Kermani, et al., “ Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1 α ,” The Journal of Biological Chemistry , vol. 280, no. 23, pp. 22473–22481, 2005. B. A. Premack and T. J. Schall, “ Chemokine receptors: gateways to inflammation and infection ,” Nature Medicine , vol. 2, no. 11, pp. 1174–1178, 1996. C. L. Richard, E. Y. Tan, and J. Blay, “Adenosin increases cell-surface CXCR4 expression on HT-29 human colorectal carcinoma cells,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #3330, 2004. S. A. Rosenberg, M. T. Lotze, L. M. Muul, et al., “A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone,” The New England Journal of Medicine , vol. 316, no. 15, pp. 889–897, 1987. R. Salcedo, K. Wasserman, H. A. Young, et al., “Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1 α ,” American Journal of Pathology , vol. 154, no. 4, pp. 1125–1135, 1999. C. C. Schimanski, S. Schwald, N. Simiantonaki, et al., “ Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer ,” Clinical Cancer Research , vol. 11, no. 5, pp. 1743–1750, 2005. P. Staller, J. Sulitkova, J. Lisztwan, H. Moch, E. J. Oakeley, and W. Krek, “ Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL ,” Nature , vol. 425, no. 6955, pp. 307–311, 2003. W. G. Stetler-Stevenson, “The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis,” Surgical Oncology Clinics of North America , vol. 10, no. 2, pp. 383–392, 2001. R. Terada, K. Yamamoto, T. Hakoda, et al., “Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases,” Laboratory Investigation , vol. 83, no. 5, pp. 665–672, 2003. D. D. Twitchell, N. R. London, Jr., D. P. Tomer, S. Tomer, B. K. Murray, and K. L. O'Neill, “Tannic acid prevents angiogenesis in vivo by inhibiting CXCR4/SDF-1 alpha binding in breast cancer cells,” Proceedings of the American Association for Cancer Research, vol. 45, Abstract #51, 2004. D. Uchida, N.-M. Begum, A. Almofti, et al., “ Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma ,” Experimental Cell Research , vol. 290, no. 2, pp. 289–302, 2003. O. Wald, O. Pappo, R. Safadi, et al., “ Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus ,” European Journal of Immunology , vol. 34, no. 4, pp. 1164–1174, 2004. J. Wang, E. Guan, G. Roderiquez, V. Calvert, R. Alvarez, and M. A. Norcross, “ Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages ,” The Journal of Biological Chemistry , vol. 276, no. 52, pp. 49236–49243, 2001. T. Wehler, F. Wolfert, C. C. Schimanski, et al., “Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease,” Oncology Reports , vol. 16, no. 6, pp. 1159–1164, 2006. L. Yang, E. Jackson, B. M. Woerner, A. Perry, D. Piwnica-Worms, and J. B. Rubin, “ Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo ,” Cancer Research , vol. 67, no. 2, pp. 651–658, 2007. D. Zagzag, B. Krishnamachary, H. Yee, et al., “ Stromal cell-derived factor-1 α and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor ,” Cancer Research , vol. 65, no. 14, pp. 6178–6188, 2005. //

Journal

Journal of OncologyHindawi Publishing Corporation

Published: Dec 30, 2008

There are no references for this article.