Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam

Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of... Rice is a stable food in Vietnam and plays a key role in the economy of the country. However, the production and the cultivating areas are adversely affected from the threats of devastation caused by the rise of sea level. Using marker-assisted backcrossing (MABC) to develop a new salt tolerance rice cultivar is one of the feasible methods to cope with these devastating changes. To improve rice salt tolerance in BT7 cultivar, FL478 was used as a donor parent to introgress the Saltol QTL conferring salt tolerance into BT7. Three backcrosses were conducted and successfully transferred positive alleles of Saltol from FL478 into BT7. The plants numbers IL-30 and IL-32 in BC3F1 population expected recurrent genome recovery of up to 99.2% and 100%, respectively. These selected lines that carried the Saltol alleles were screened in field for their agronomic traits. All improved lines had Saltol allele similar to the donor parent FL478, whereas their agronomic performances were the same as the original BT7. We show here the success of improving rice salt tolerance by MABC and the high efficiency of selection in early generations. In the present study, MABC has accelerated the development of superior qualities in the genetic background of BT7. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Plant Genomics Hindawi Publishing Corporation

Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam

Loading next page...
 
/lp/hindawi-publishing-corporation/molecular-breeding-to-improve-salt-tolerance-of-rice-oryza-sativa-l-in-NC0GZ4evPY
Publisher
Hindawi Publishing Corporation
Copyright
Copyright © 2012 Le Hung Linh et al.
ISSN
1687-5370
eISSN
1687-5389
Publisher site
See Article on Publisher Site

Abstract

Rice is a stable food in Vietnam and plays a key role in the economy of the country. However, the production and the cultivating areas are adversely affected from the threats of devastation caused by the rise of sea level. Using marker-assisted backcrossing (MABC) to develop a new salt tolerance rice cultivar is one of the feasible methods to cope with these devastating changes. To improve rice salt tolerance in BT7 cultivar, FL478 was used as a donor parent to introgress the Saltol QTL conferring salt tolerance into BT7. Three backcrosses were conducted and successfully transferred positive alleles of Saltol from FL478 into BT7. The plants numbers IL-30 and IL-32 in BC3F1 population expected recurrent genome recovery of up to 99.2% and 100%, respectively. These selected lines that carried the Saltol alleles were screened in field for their agronomic traits. All improved lines had Saltol allele similar to the donor parent FL478, whereas their agronomic performances were the same as the original BT7. We show here the success of improving rice salt tolerance by MABC and the high efficiency of selection in early generations. In the present study, MABC has accelerated the development of superior qualities in the genetic background of BT7.

Journal

International Journal of Plant GenomicsHindawi Publishing Corporation

Published: Dec 27, 2012

There are no references for this article.