Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Who is the boss? Identifying key roles in telecom fraud network via centrality-guided deep random walk

Who is the boss? Identifying key roles in telecom fraud network via centrality-guided deep random... Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be identified and captured. One strategy is to analyze the fraud interaction network using social network analysis. However, the underlying structures of fraud networks are different from those of common social networks, which makes traditional indicators such as centrality not directly applicable. Recently, a new line of research called deep random walk has emerged. These methods utilize random walks to explore local information and then apply deep learning algorithms to learn the representative feature vectors. Although effective for many types of networks, random walk is used for discovering local structural equivalence and does not consider the global properties of nodes.Design/methodology/approachThe authors proposed a new method to combine the merits of deep random walk and social network analysis, which is called centrality-guided deep random walk. By using the centrality of nodes as edge weights, the authors’ biased random walks implicitly consider the global importance of nodes and can thus find key fraudster roles more accurately. To evaluate the authors’ algorithm, a real telecom fraud data set with around 562 fraudsters was built, which is the largest telecom fraud network to date.FindingsThe authors’ proposed method achieved better results than traditional centrality indices and various deep random walk algorithms and successfully identified key roles in a fraud network.Research limitations/implicationsThe study used co-offending and flight record to construct a criminal network, more interpersonal relationships of fraudsters, such as friendships and relatives, can be included in the future.Originality/valueThis paper proposed a novel algorithm, centrality-guided deep random walk, and applied it to a new telecom fraud data set. Experimental results show that the authors’ method can successfully identify the key roles in a fraud group and outperform other baseline methods. To the best of the authors’ knowledge, it is the largest analysis of telecom fraud network to date. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Data Technologies and Applications Emerald Publishing

Who is the boss? Identifying key roles in telecom fraud network via centrality-guided deep random walk

Loading next page...
 
/lp/emerald-publishing/who-is-the-boss-identifying-key-roles-in-telecom-fraud-network-via-ru0B3Ukyqs

References (23)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2514-9288
DOI
10.1108/dta-05-2020-0103
Publisher site
See Article on Publisher Site

Abstract

Telecommunication (telecom) fraud is one of the most common crimes and causes the greatest financial losses. To effectively eradicate fraud groups, the key fraudsters must be identified and captured. One strategy is to analyze the fraud interaction network using social network analysis. However, the underlying structures of fraud networks are different from those of common social networks, which makes traditional indicators such as centrality not directly applicable. Recently, a new line of research called deep random walk has emerged. These methods utilize random walks to explore local information and then apply deep learning algorithms to learn the representative feature vectors. Although effective for many types of networks, random walk is used for discovering local structural equivalence and does not consider the global properties of nodes.Design/methodology/approachThe authors proposed a new method to combine the merits of deep random walk and social network analysis, which is called centrality-guided deep random walk. By using the centrality of nodes as edge weights, the authors’ biased random walks implicitly consider the global importance of nodes and can thus find key fraudster roles more accurately. To evaluate the authors’ algorithm, a real telecom fraud data set with around 562 fraudsters was built, which is the largest telecom fraud network to date.FindingsThe authors’ proposed method achieved better results than traditional centrality indices and various deep random walk algorithms and successfully identified key roles in a fraud network.Research limitations/implicationsThe study used co-offending and flight record to construct a criminal network, more interpersonal relationships of fraudsters, such as friendships and relatives, can be included in the future.Originality/valueThis paper proposed a novel algorithm, centrality-guided deep random walk, and applied it to a new telecom fraud data set. Experimental results show that the authors’ method can successfully identify the key roles in a fraud group and outperform other baseline methods. To the best of the authors’ knowledge, it is the largest analysis of telecom fraud network to date.

Journal

Data Technologies and ApplicationsEmerald Publishing

Published: Jan 13, 2021

Keywords: Telecom fraud; Deep random walk; Crime network analysis; Social network analysis

There are no references for this article.