Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Torsional vibrations in a shaft train of an air compressor: modification, calculation and measurement

Torsional vibrations in a shaft train of an air compressor: modification, calculation and... Due to the installation of the new, more powerful gearbox and the dismantling of the exciter machine, the vibration characteristics of the shaft train will be changed. Therefore, it is necessary to reassess the shaft train. It is to be investigated if the shaft train of the compressor meets the general requirements for bending and torsional vibrations and can be safely operated within the electrical network. The purpose of this paper is to show the necessary alignment of modification, calculation and measurement in such a project..Design/methodology/approachAfter some modification work on the shaft train of an air compressor, it was necessary to do some engineering calculations regarding the bending natural and torsional natural frequencies and their mode shapes. The correctness of the calculated values was proven by vibration measurements performed at the shaft train in operation.FindingsIt can be concluded that the change and replacement of rotating equipment in a shaft train never should be done without any engineering calculations in advance and measurements after the component modification. Most important is that the calculation results have to be compared with the measurement results for verifying the calculation assumptions. In the case described above, one can see that theory and practice match well. In addition to this, the very low damping of torsional vibrations is proved again, which can be a significant problem in some situations.Originality/valueAlso, today one can find torsional vibration measurements of rotating machines, including frequency, magnitude and damping factor, very seldom. Especially for smaller machines, there are no real comparisons between calculation and measurement are usual. This paper shows that an alignment between theoretical and practical approaches is necessary to avoid operational problems for rotating machines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Torsional vibrations in a shaft train of an air compressor: modification, calculation and measurement

Loading next page...
 
/lp/emerald-publishing/torsional-vibrations-in-a-shaft-train-of-an-air-compressor-rVRZk0RLjM
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0332-1649
eISSN
0332-1649
DOI
10.1108/compel-07-2021-0252
Publisher site
See Article on Publisher Site

Abstract

Due to the installation of the new, more powerful gearbox and the dismantling of the exciter machine, the vibration characteristics of the shaft train will be changed. Therefore, it is necessary to reassess the shaft train. It is to be investigated if the shaft train of the compressor meets the general requirements for bending and torsional vibrations and can be safely operated within the electrical network. The purpose of this paper is to show the necessary alignment of modification, calculation and measurement in such a project..Design/methodology/approachAfter some modification work on the shaft train of an air compressor, it was necessary to do some engineering calculations regarding the bending natural and torsional natural frequencies and their mode shapes. The correctness of the calculated values was proven by vibration measurements performed at the shaft train in operation.FindingsIt can be concluded that the change and replacement of rotating equipment in a shaft train never should be done without any engineering calculations in advance and measurements after the component modification. Most important is that the calculation results have to be compared with the measurement results for verifying the calculation assumptions. In the case described above, one can see that theory and practice match well. In addition to this, the very low damping of torsional vibrations is proved again, which can be a significant problem in some situations.Originality/valueAlso, today one can find torsional vibration measurements of rotating machines, including frequency, magnitude and damping factor, very seldom. Especially for smaller machines, there are no real comparisons between calculation and measurement are usual. This paper shows that an alignment between theoretical and practical approaches is necessary to avoid operational problems for rotating machines.

Journal

COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Aug 26, 2022

Keywords: Synchronous motor; Curved-tooth coupling; Planetary gear; Curved-tooth coupling; Compressor; Electrical machine; Electromagnetic fields; Torque calculation

References