Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Time headway distribution analysis of naturalistic road users based on aerial datasets

Time headway distribution analysis of naturalistic road users based on aerial datasets Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.Design/methodology/approachIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.FindingsIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.Originality/valueThe results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Intelligent and Connected Vehicles Emerald Publishing

Time headway distribution analysis of naturalistic road users based on aerial datasets

Time headway distribution analysis of naturalistic road users based on aerial datasets

Journal of Intelligent and Connected Vehicles , Volume 5 (3): 8 – Oct 11, 2022

Abstract

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.Design/methodology/approachIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.FindingsIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.Originality/valueThe results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW.

Loading next page...
 
/lp/emerald-publishing/time-headway-distribution-analysis-of-naturalistic-road-users-based-on-qEOz4nkLj0
Publisher
Emerald Publishing
Copyright
© Ruilin Yu, Yuxin Zhang, Luyao Wang and Xinyi Du.
ISSN
2399-9802
DOI
10.1108/jicv-01-2022-0004
Publisher site
See Article on Publisher Site

Abstract

Time headway (THW) is an essential parameter in traffic safety and is used as a typical control variable by many vehicle control algorithms, especially in safety-critical ADAS and automated driving systems. However, due to the randomness of human drivers, THW cannot be accurately represented, affecting scholars’ more profound research.Design/methodology/approachIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.FindingsIn this work, two data sets are used as the experimental data to calculate the goodness-of-fit of 18 commonly used distribution models of THW to select the best distribution model. Subsequently, the characteristic parameters of traffic flow are extracted from the data set, and three variables with higher importance are extracted using the random forest model. Combining the best distribution model parameters of the data set, this study obtained a distribution model with adaptive parameters, and its performance and applicability are verified.Originality/valueThe results show that the proposed model has a 62.7% performance improvement over the distribution model with fixed parameters. Moreover, the parameter function of the distribution model can be regarded as a quantitative analysis of the degree of influence of the traffic flow state on THW.

Journal

Journal of Intelligent and Connected VehiclesEmerald Publishing

Published: Oct 11, 2022

Keywords: Goodness-of-fit; Adaptive parameter; Distribution model; Road user behavior; THW

References