Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

System optimization by multiobjective genetic algorithms and analysis of the coupling between variables, constraints and objectives

System optimization by multiobjective genetic algorithms and analysis of the coupling between... Purpose – This paper presents a methodology based on Multiobjective Genetic Algorithms (MOGAs) for the design of electrical engineering systems. MOGAs allow one to optimize multiple heterogeneous criteria in complex systems, but also simplify couplings and sensitivity analysis by determining the evolution of design variables along the Pareto‐optimal front. Design/methodology/approach – To illustrate the use of MOGAs in electrical engineering, the optimal design of an electromechanical system has been investigated. A rather simplified case study dealing with the optimal dimensioning of an inverter – permanent magnet motor – reducer – load association is carried out to demonstrate the interest of the approach. The purpose is to simultaneously minimize two objectives: the global losses and the mass of the system. The system model is described by analytical model and we use the MOGA called NSGA‐II. Findings – From the extraction of Pareto‐optimal solutions, MOGAs facilitate the investigation of parametric sensitivity and the analysis of couplings in the system. Through a simple but typical academic problem dealing with the optimal dimensioning of a inverter – permanent magnet motor – reducer – load association, it has been shown that this multiobjective a posteriori approach could offer interesting outlooks in the global optimization and design of complex heterogeneous systems. The final choice between all Pareto‐optimal configurations can be a posteriori done in relation to other issues which have not been considered in the optimization process. In this paper, we illustrate this point by considering the cogging torque for the final decision. Originality/value – We have proposed an original quantitative methodology based on correlation coefficients to characterize the system interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

System optimization by multiobjective genetic algorithms and analysis of the coupling between variables, constraints and objectives

Loading next page...
 
/lp/emerald-publishing/system-optimization-by-multiobjective-genetic-algorithms-and-analysis-gWgBpj8h7f
Publisher
Emerald Publishing
Copyright
Copyright © 2005 Emerald Group Publishing Limited. All rights reserved.
ISSN
0332-1649
DOI
10.1108/03321640510598157
Publisher site
See Article on Publisher Site

Abstract

Purpose – This paper presents a methodology based on Multiobjective Genetic Algorithms (MOGAs) for the design of electrical engineering systems. MOGAs allow one to optimize multiple heterogeneous criteria in complex systems, but also simplify couplings and sensitivity analysis by determining the evolution of design variables along the Pareto‐optimal front. Design/methodology/approach – To illustrate the use of MOGAs in electrical engineering, the optimal design of an electromechanical system has been investigated. A rather simplified case study dealing with the optimal dimensioning of an inverter – permanent magnet motor – reducer – load association is carried out to demonstrate the interest of the approach. The purpose is to simultaneously minimize two objectives: the global losses and the mass of the system. The system model is described by analytical model and we use the MOGA called NSGA‐II. Findings – From the extraction of Pareto‐optimal solutions, MOGAs facilitate the investigation of parametric sensitivity and the analysis of couplings in the system. Through a simple but typical academic problem dealing with the optimal dimensioning of a inverter – permanent magnet motor – reducer – load association, it has been shown that this multiobjective a posteriori approach could offer interesting outlooks in the global optimization and design of complex heterogeneous systems. The final choice between all Pareto‐optimal configurations can be a posteriori done in relation to other issues which have not been considered in the optimization process. In this paper, we illustrate this point by considering the cogging torque for the final decision. Originality/value – We have proposed an original quantitative methodology based on correlation coefficients to characterize the system interactions.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Sep 1, 2005

Keywords: Optimization techniques; Programming and algorithm theory; Electrical engineering

References