Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this investigation is to identify, evaluate, integrate and summarize relevant and qualified papers through conducting a systematic literature review (SLR) on the application of recommender systems (RSs) to suggest a scholarly publication venue for researcher's paper.Design/methodology/approachTo identify the relevant papers published up to August 11, 2018, an SLR study on four databases (Scopus, Web of Science, IEEE Xplore and ScienceDirect) was conducted. We pursued the guidelines presented by Kitchenham and Charters (2007) for performing SLRs in software engineering. The papers were analyzed based on data sources, RSs classes, techniques/methods/algorithms, datasets, evaluation methodologies and metrics, as well as future directions.FindingsA total of 32 papers were identified. The most data sources exploited in these papers were textual (title/abstract/keywords) and co-authorship data. The RS classes in the selected papers were almost equally used. DBLP was the main dataset utilized. Cosine similarity, social network analysis (SNA) and term frequency–inverse document frequency (TF–IDF) algorithm were frequently used. In terms of evaluation methodologies, 24 papers applied only offline evaluations. Furthermore, precision, accuracy and recall metrics were the popular performance metrics. In the reviewed papers, “use more datasets” and “new algorithms” were frequently mentioned in the future work part as well as conclusions.Originality/valueGiven that a review study has not been conducted in this area, this paper can provide an insight into the current status in this area and may also contribute to future research in this field.
Data Technologies and Applications – Emerald Publishing
Published: Jun 2, 2020
Keywords: Recommender systems; Recommendation systems; Venue; Journal; Conference
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.