Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to deal with the optimal shape design of a class of permanent magnet motors by minimizing multiple objectives according to an original interpretation of Pareto optimality. The proposed method solves a many-objective problems characterized by five objective functions and five design variables with evolution strategy algorithms, classically used for single- and multi-objective (two objective functions) optimization problems.Design/methodology/approachTwo approaches are proposed in the paper: the All-Objectives (AO) and the Many-Objectives (MO) optimization approach. The former is based on a single-objective optimization of a preference function, i.e. a normalized weighted sum. In contrast, in the MO a multi-objective optimization algorithm is applied to the minimization of a weight-free preference function and simultaneously to a maximization of the distance of the current solution from the prototype. The optimizations are based on an equivalent circuit model of the Permanent Magnet (PM) motor, but the results are assessed by means of finite element analyses (FEAs).FindingsAn extensive study of the solutions obtained by means of the different optimization approaches is provided by means of post-processing analyses. Both the approaches find non-dominated solutions with respect to the prototype that are substantially improving the initial solution. The points of strength along with the weakness points of each solution with respect to the prototype are analysed in depth.Practical implicationsThe paper gives a good guide to the designers of electric motors, focussed on a shape design optimization.Originality/valueConsidering simultaneously five objective functions in an automated optimal design procedure is challenging. The proposed approach, based on a well-known and established optimization algorithm, but exploiting a new concept of degree of conflict, can lead to new results in the field of automated optimal design in a many-objective context.
COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Oct 3, 2022
Keywords: Shape design; Permanent magnet motor; Stochastic algorithms; All-objective optimization; Many-objective optimization; Permanent magnet machine; Multiobjective optimization; Shape optimization; Design optimization methodology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.