Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this research paper is to discuss a software reliability growth model (SRGM) based on the non‐homogeneous Poisson process which incorporates the Burr type X testing‐effort function (TEF), and to determine the optimal release‐time based on cost‐reliability criteria. Design/methodology/approach – It is shown that the Burr type X TEF can be expressed as a software development/testing‐effort consumption curve. Weighted least squares estimation method is proposed to estimate the TEF parameters. The SRGM parameters are estimated by the maximum likelihood estimation method. The standard errors and confidence intervals of SRGM parameters are also obtained. Furthermore, the optimal release‐time determination based on cost‐reliability criteria has been discussed within the framework. Findings – The performance of the proposed SRGM is demonstrated by using actual data sets from three software projects. Results are compared with other traditional SRGMs to show that the proposed model has a fairly better prediction capability and that the Burr type X TEF is suitable for incorporating into software reliability modelling. Results also reveal that the SRGM with Burr type X TEF can estimate the number of initial faults better than that of other traditional SRGMs. Research limitations/implications – The paper presents the estimation method with equal weight. Future research may include extending the present study to unequal weight. Practical implications – The new SRGM may be useful in detecting more faults that are difficult to find during regular testing, and in assisting software engineers to improve their software development process. Originality/value – The incorporated TEF is flexible and can be used to describe the actual expenditure patterns more faithfully during software development.
Journal of Modelling in Management – Emerald Publishing
Published: Mar 13, 2009
Keywords: Program testing; Computer software; Modelling
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.