Access the full text.
Sign up today, get DeepDyve free for 14 days.
To design a pulse power water treatment system, it is necessary to design a reactor optimally. One of the most essential types of reactors used in water treatment is the dielectric barrier discharge (DBD) reactor. The purpose of this paper is to model the electric field in the two types of planar and coaxial reactors to have an accurate analytical formula for using in the optimal design according to the required electric field of the treatment.Design/methodology/approachThe method proposed in this paper focuses on the voltage of different areas in the reactor and different boundary conditions to obtain the surface charge density. In this regard, parameters of the dielectric and treated material, as well as the reactor dimension, have been affected in the equations. To confirm the analytical results, the finite element method simulation has been performed, and it shows the accuracy of this method.FindingsThe exact analytical equation of the electric field is found within the discharge zone of the planar and coaxial DBD reactors. These equations can predict the values of different parameters of the reactor required to purify the material before each design and it does not even require simulation.Originality/valueThe electric field formula presented in this paper can allow the manufacturers of pulse power water treatment systems to optimize their design easily, cost-effectively and in less time. Also, the formulas provided are completely general and remain effective for all materials.
COMPEL: Theinternational Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Aug 26, 2022
Keywords: Electric field; Finite element method; DBD reactor; Pulse power; High voltage; Planar reactor; Coaxial reactor
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.