Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Finite element models of dynamic-WPTS: a field-circuit approach

Finite element models of dynamic-WPTS: a field-circuit approach The paper aims to propose a a field-circuit method for investigating the magnetic behavior of a wireless power transfer system (WPTS) for the charge of batteries of electric vehicles. In particular, a 3D model for finite element analysis (FEA) for the field simulation of a WPTS is developed. Specifically, the effects of aluminum shield and steel layer, representing the car frame, on the self and mutual inductances are investigated. An equivalent electric circuit is then built, and the relevant lumped parameters are identified by means of the FEAs.Design/methodology/approachThe finite element model is used to evaluate self and mutual inductances in several transmitting-receiving coil configurations and relative positions. In particular, the FEA simulates the aluminum and steel layers as shell elements in a 3D domain. The self and mutual inductance values in the aligned coil case are also used as input parameters in a circuit model to evaluate the onload current.FindingsThe use of shell elements in FEA substantially reduces the number of mesh elements needed to simulate the eddy currents in the steel and aluminum layer, so putting the ground for low-cost field analysis. Moreover, the FEA gives an accurate computation of the self and mutual inductance to be used in a circuit model, which, in turn, provides a fast update of the onload induced current.Originality/valueTo save computational time, the use of 2D shell elements to model thin conductive regions introduces a simplified FEA that could be used in the WPTS simulation. Moreover, the dynamic behavior of WPTS, i.e. the operation when the receiving coil is moving with respect to the transmitting one, is considered. Because of the lumped parameters’ dependence upon the relative positions of the two coils, the proposed method allows identifying the circuit parameters for several configurations so substantially reducing the computational burden. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/finite-element-models-of-dynamic-wpts-a-field-circuit-approach-ef0yX3VVbU

References (44)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
0332-1649
eISSN
0332-1649
DOI
10.1108/compel-10-2021-0403
Publisher site
See Article on Publisher Site

Abstract

The paper aims to propose a a field-circuit method for investigating the magnetic behavior of a wireless power transfer system (WPTS) for the charge of batteries of electric vehicles. In particular, a 3D model for finite element analysis (FEA) for the field simulation of a WPTS is developed. Specifically, the effects of aluminum shield and steel layer, representing the car frame, on the self and mutual inductances are investigated. An equivalent electric circuit is then built, and the relevant lumped parameters are identified by means of the FEAs.Design/methodology/approachThe finite element model is used to evaluate self and mutual inductances in several transmitting-receiving coil configurations and relative positions. In particular, the FEA simulates the aluminum and steel layers as shell elements in a 3D domain. The self and mutual inductance values in the aligned coil case are also used as input parameters in a circuit model to evaluate the onload current.FindingsThe use of shell elements in FEA substantially reduces the number of mesh elements needed to simulate the eddy currents in the steel and aluminum layer, so putting the ground for low-cost field analysis. Moreover, the FEA gives an accurate computation of the self and mutual inductance to be used in a circuit model, which, in turn, provides a fast update of the onload induced current.Originality/valueTo save computational time, the use of 2D shell elements to model thin conductive regions introduces a simplified FEA that could be used in the WPTS simulation. Moreover, the dynamic behavior of WPTS, i.e. the operation when the receiving coil is moving with respect to the transmitting one, is considered. Because of the lumped parameters’ dependence upon the relative positions of the two coils, the proposed method allows identifying the circuit parameters for several configurations so substantially reducing the computational burden.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Aug 5, 2022

Keywords: Dynamic-WPTS; Field-circuit model; Magnetic field; Finite element analysis; Wireless power transfer

There are no references for this article.