Access the full text.
Sign up today, get DeepDyve free for 14 days.
Purpose – The purpose of this paper is to find the geometry of a crack within a conductive plate and its parameters, on the basis of non-destructive testing, using eddy currents. The input data represents the measured values of magnetic flux density within the centre of the excitation coil. Design/methodology/approach – The position of a crack can be determined by taking into consideration any change in the magnetic flux density between the measured points. The depth and width are determined through the use of a finite element model. Findings – These calculations are the basis for determining a function that explains how magnetic flux density changes if the depth or width has changed. Jacobi's matrix is calculated using the determined functions’ analytical derivatives. Originality/value – After wards, through the Newton-Raphson iterative procedure using the finite element method calculation results, the crack-depth and width can be obtained, this being one of the objectives in this paper. The suitability of the presented method was verified by the experimental example.
COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering – Emerald Publishing
Published: Oct 28, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.