Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Energy storage system for peak shaving

Energy storage system for peak shaving Purpose – The main purpose of this study is to provide an effective sizing method and an optimal peak shaving strategy for an energy storage system to reduce the electrical peak demand of the customers. A cost-savings analytical tool is developed to provide a quick rule-of-thumb for customers to choose an appropriate size of energy storage for various tariff schemes. Design/methodology/approach – A novel sizing method is proposed to obtain the optimum size of energy storage for commercial and industrial customers based on their historical load profile. An algorithm is developed to determine the threshold level for peak shaving. One of the buildings at Universiti Tunku Abdul Rahman (UTAR), Malaysia, is chosen for this study. A three-phase energy storage system rated at 15 kVA is developed and connected to the low-voltage electrical network in the building. An adaptive control algorithm is developed and implemented to optimize the peak shaving. Findings – The sizing analysis shows that the customer under the C2 tariff rate yields the highest saving, followed by E2, C1 and E1. The experimental results presented indicate that the proposed adaptive control algorithm has effectively optimized the peak demand to be shaved. Research limitations/implications – This study demonstrates the potential of energy storage in reducing the peak demand and cost of electricity. One of the main challenges of real-time peak shaving is to determine an appropriate threshold level such that the energy stored in the energy storage system is sufficient during the peak shaving process. Originality/value – The originality of the paper is the optimal sizing method of the energy storage system based on the historical load profile and adaptive control algorithm to optimize the peak demand deduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Sector Management Emerald Publishing

Loading next page...
 
/lp/emerald-publishing/energy-storage-system-for-peak-shaving-kyjNHV7gRT

References (13)

Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
1750-6220
DOI
10.1108/IJESM-01-2015-0003
Publisher site
See Article on Publisher Site

Abstract

Purpose – The main purpose of this study is to provide an effective sizing method and an optimal peak shaving strategy for an energy storage system to reduce the electrical peak demand of the customers. A cost-savings analytical tool is developed to provide a quick rule-of-thumb for customers to choose an appropriate size of energy storage for various tariff schemes. Design/methodology/approach – A novel sizing method is proposed to obtain the optimum size of energy storage for commercial and industrial customers based on their historical load profile. An algorithm is developed to determine the threshold level for peak shaving. One of the buildings at Universiti Tunku Abdul Rahman (UTAR), Malaysia, is chosen for this study. A three-phase energy storage system rated at 15 kVA is developed and connected to the low-voltage electrical network in the building. An adaptive control algorithm is developed and implemented to optimize the peak shaving. Findings – The sizing analysis shows that the customer under the C2 tariff rate yields the highest saving, followed by E2, C1 and E1. The experimental results presented indicate that the proposed adaptive control algorithm has effectively optimized the peak demand to be shaved. Research limitations/implications – This study demonstrates the potential of energy storage in reducing the peak demand and cost of electricity. One of the main challenges of real-time peak shaving is to determine an appropriate threshold level such that the energy stored in the energy storage system is sufficient during the peak shaving process. Originality/value – The originality of the paper is the optimal sizing method of the energy storage system based on the historical load profile and adaptive control algorithm to optimize the peak demand deduction.

Journal

International Journal of Energy Sector ManagementEmerald Publishing

Published: Apr 4, 2016

There are no references for this article.