Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Electric field distribution and voltage breakdown modeling for any PN junction

Electric field distribution and voltage breakdown modeling for any PN junction Purpose – Scientists and engineers have been solving Poisson’s equation in PN junctions following two approaches: analytical solving or numerical methods. Although several efforts have been accomplished to offer accurate and fast analyses of the electric field distribution as a function of voltage bias and doping profiles, so far none achieved an analytic or semi-analytic solution to describe neither a double diffused PN junction nor a general case for any doping profile. The paper aims to discuss these issues. Design/methodology/approach – In this work, a double Gaussian doping distribution is first considered. However, such a doping profile leads to an implicit problem where Poisson’s equation cannot be solved analytically. A method is introduced and successfully applied, and compared to a finite element analysis. The approach is then generalized, where any doping profile can be considered. 2D and 3D extensions are also presented, when symmetries occur for the doping profile. Findings – These results and the approach here presented offer an efficient and accurate alternative to numerical methods for the modeling and simulation of mathematical equations arising in physics of semiconductor devices. Research limitations/implications – A general 3D extension in the case where no symmetry exists can be considered for further developments. Practical implications – The paper strongly simplify and ease the optimization and design of any PN junction. Originality/value – This paper provides a novel method for electric field distribution analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering Emerald Publishing

Electric field distribution and voltage breakdown modeling for any PN junction

Loading next page...
 
/lp/emerald-publishing/electric-field-distribution-and-voltage-breakdown-modeling-for-any-pn-YieLOtveQ2
Publisher
Emerald Publishing
Copyright
Copyright © Emerald Group Publishing Limited
ISSN
0332-1649
DOI
10.1108/COMPEL-12-2014-0330
Publisher site
See Article on Publisher Site

Abstract

Purpose – Scientists and engineers have been solving Poisson’s equation in PN junctions following two approaches: analytical solving or numerical methods. Although several efforts have been accomplished to offer accurate and fast analyses of the electric field distribution as a function of voltage bias and doping profiles, so far none achieved an analytic or semi-analytic solution to describe neither a double diffused PN junction nor a general case for any doping profile. The paper aims to discuss these issues. Design/methodology/approach – In this work, a double Gaussian doping distribution is first considered. However, such a doping profile leads to an implicit problem where Poisson’s equation cannot be solved analytically. A method is introduced and successfully applied, and compared to a finite element analysis. The approach is then generalized, where any doping profile can be considered. 2D and 3D extensions are also presented, when symmetries occur for the doping profile. Findings – These results and the approach here presented offer an efficient and accurate alternative to numerical methods for the modeling and simulation of mathematical equations arising in physics of semiconductor devices. Research limitations/implications – A general 3D extension in the case where no symmetry exists can be considered for further developments. Practical implications – The paper strongly simplify and ease the optimization and design of any PN junction. Originality/value – This paper provides a novel method for electric field distribution analysis.

Journal

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic EngineeringEmerald Publishing

Published: Jan 4, 2016

There are no references for this article.