Access the full text.
Sign up today, get DeepDyve free for 14 days.
This purpose of this study is to perfrom the analysis of COVID-19 with the help of blood samples. The blood samples used in the study consist of more than 100 features. So to process high dimensional data, feature reduction has been performed by using the genetic algorithm.Design/methodology/approachIn this study, the authors will implement the genetic algorithm for the prediction of COVID-19 from the blood test sample. The sample contains records of around 5,644 patients with 111 attributes. The genetic algorithm such as relief with ant colony optimization algorithm will be used for dimensionality reduction approach.FindingsThe implementation of this study is done through python programming language and the performance evaluation of the model is done through various parameters such as accuracy, sensitivity, specificity and area under curve (AUC).Originality/valueThe implemented model has achieved an accuracy of 98.7%, sensitivity of 96.76%, specificity of 98.80% and AUC of 92%. The results have shown that the implemented algorithm has performed better than other states of the art algorithms.
World Journal of Engineering – Emerald Publishing
Published: Jul 1, 2021
Keywords: Feature selection; Random forest; SARS-CoV-2; Relief; Ant colony optimization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.