Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Artificial intelligence technologies for more flexible recommendation in uniforms

Artificial intelligence technologies for more flexible recommendation in uniforms This research aims to collect human body variables via 2D images captured by digital cameras. Based on those human variables, the forecast and recommendation of the Digital Camouflage Uniforms (DCU) for Taiwan's military personnel are made.Design/methodology/approachA total of 375 subjects are recruited (male: 253; female: 122). In this study, OpenPose converts the photographed 2D images into four body variables, which are compared with those of a tape measure and 3D scanning simultaneously. Then, the recommendation model of the DCU is built by the decision tree. Meanwhile, the Euclidean distance of each size of the DCU in the manufacturing specification is calculated as the best three recommendations.FindingsThe recommended size established by the decision tree is only 0.62 and 0.63. However, for the recommendation result of the best three options, the DCU Fitting Score can be as high as 0.8 or more. The results of OpenPose and 3D scanning have the highest correlation coefficient even though the method of measuring body size is different. This result confirms that OpenPose has significant measurement validity. That is, inexpensive equipment can be used to obtain reasonable results.Originality/valueIn general, the method proposed in this study is suitable for applications in e-commerce and the apparel industry in a long-distance, non-contact and non-pre-labeled manner when the world is facing Covid-19. In particular, it can reduce the measurement troubles of ordinary users when purchasing clothing online. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Data Technologies and Applications Emerald Publishing

Artificial intelligence technologies for more flexible recommendation in uniforms

Loading next page...
 
/lp/emerald-publishing/artificial-intelligence-technologies-for-more-flexible-recommendation-dFwo5VEByr
Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2514-9288
DOI
10.1108/dta-09-2021-0230
Publisher site
See Article on Publisher Site

Abstract

This research aims to collect human body variables via 2D images captured by digital cameras. Based on those human variables, the forecast and recommendation of the Digital Camouflage Uniforms (DCU) for Taiwan's military personnel are made.Design/methodology/approachA total of 375 subjects are recruited (male: 253; female: 122). In this study, OpenPose converts the photographed 2D images into four body variables, which are compared with those of a tape measure and 3D scanning simultaneously. Then, the recommendation model of the DCU is built by the decision tree. Meanwhile, the Euclidean distance of each size of the DCU in the manufacturing specification is calculated as the best three recommendations.FindingsThe recommended size established by the decision tree is only 0.62 and 0.63. However, for the recommendation result of the best three options, the DCU Fitting Score can be as high as 0.8 or more. The results of OpenPose and 3D scanning have the highest correlation coefficient even though the method of measuring body size is different. This result confirms that OpenPose has significant measurement validity. That is, inexpensive equipment can be used to obtain reasonable results.Originality/valueIn general, the method proposed in this study is suitable for applications in e-commerce and the apparel industry in a long-distance, non-contact and non-pre-labeled manner when the world is facing Covid-19. In particular, it can reduce the measurement troubles of ordinary users when purchasing clothing online.

Journal

Data Technologies and ApplicationsEmerald Publishing

Published: Aug 23, 2022

Keywords: Body measurements; Body detection; Decision tree; Fit customization; Anthropometry

References