Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

An optimization-based deep belief network for the detection of phishing e-mails

An optimization-based deep belief network for the detection of phishing e-mails Phishing is a serious cybersecurity problem, which is widely available through multimedia, such as e-mail and Short Messaging Service (SMS) to collect the personal information of the individual. However, the rapid growth of the unsolicited and unwanted information needs to be addressed, raising the necessity of the technology to develop any effective anti-phishing methods.Design/methodology/approachThe primary intention of this research is to design and develop an approach for preventing phishing by proposing an optimization algorithm. The proposed approach involves four steps, namely preprocessing, feature extraction, feature selection and classification, for dealing with phishing e-mails. Initially, the input data set is subjected to the preprocessing, which removes stop words and stemming in the data and the preprocessed output is given to the feature extraction process. By extracting keyword frequency from the preprocessed, the important words are selected as the features. Then, the feature selection process is carried out using the Bhattacharya distance such that only the significant features that can aid the classification are selected. Using the selected features, the classification is done using the deep belief network (DBN) that is trained using the proposed fractional-earthworm optimization algorithm (EWA). The proposed fractional-EWA is designed by the integration of EWA and fractional calculus to determine the weights in the DBN optimally.FindingsThe accuracy of the methods, naive Bayes (NB), DBN, neural network (NN), EWA-DBN and fractional EWA-DBN is 0.5333, 0.5455, 0.5556, 0.5714 and 0.8571, respectively. The sensitivity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.4558, 0.5631, 0.7035, 0.7045 and 0.8182, respectively. Likewise, the specificity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.5052, 0.5631, 0.7028, 0.7040 and 0.8800, respectively. It is clear from the comparative table that the proposed method acquired the maximal accuracy, sensitivity and specificity compared with the existing methods.Originality/valueThe e-mail phishing detection is performed in this paper using the optimization-based deep learning networks. The e-mails include a number of unwanted messages that are to be detected in order to avoid the storage issues. The importance of the method is that the inclusion of the historical data in the detection process enhances the accuracy of detection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Data Technologies and Applications Emerald Publishing

An optimization-based deep belief network for the detection of phishing e-mails

Data Technologies and Applications , Volume 54 (4): 21 – Aug 25, 2020

Loading next page...
 
/lp/emerald-publishing/an-optimization-based-deep-belief-network-for-the-detection-of-p2aUofmzxd

References (36)

Publisher
Emerald Publishing
Copyright
© Emerald Publishing Limited
ISSN
2514-9288
DOI
10.1108/dta-02-2020-0043
Publisher site
See Article on Publisher Site

Abstract

Phishing is a serious cybersecurity problem, which is widely available through multimedia, such as e-mail and Short Messaging Service (SMS) to collect the personal information of the individual. However, the rapid growth of the unsolicited and unwanted information needs to be addressed, raising the necessity of the technology to develop any effective anti-phishing methods.Design/methodology/approachThe primary intention of this research is to design and develop an approach for preventing phishing by proposing an optimization algorithm. The proposed approach involves four steps, namely preprocessing, feature extraction, feature selection and classification, for dealing with phishing e-mails. Initially, the input data set is subjected to the preprocessing, which removes stop words and stemming in the data and the preprocessed output is given to the feature extraction process. By extracting keyword frequency from the preprocessed, the important words are selected as the features. Then, the feature selection process is carried out using the Bhattacharya distance such that only the significant features that can aid the classification are selected. Using the selected features, the classification is done using the deep belief network (DBN) that is trained using the proposed fractional-earthworm optimization algorithm (EWA). The proposed fractional-EWA is designed by the integration of EWA and fractional calculus to determine the weights in the DBN optimally.FindingsThe accuracy of the methods, naive Bayes (NB), DBN, neural network (NN), EWA-DBN and fractional EWA-DBN is 0.5333, 0.5455, 0.5556, 0.5714 and 0.8571, respectively. The sensitivity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.4558, 0.5631, 0.7035, 0.7045 and 0.8182, respectively. Likewise, the specificity of the methods, NB, DBN, NN, EWA-DBN and fractional EWA-DBN is 0.5052, 0.5631, 0.7028, 0.7040 and 0.8800, respectively. It is clear from the comparative table that the proposed method acquired the maximal accuracy, sensitivity and specificity compared with the existing methods.Originality/valueThe e-mail phishing detection is performed in this paper using the optimization-based deep learning networks. The e-mails include a number of unwanted messages that are to be detected in order to avoid the storage issues. The importance of the method is that the inclusion of the historical data in the detection process enhances the accuracy of detection.

Journal

Data Technologies and ApplicationsEmerald Publishing

Published: Aug 25, 2020

Keywords: E-mail phishing; Optimization; Fractional concept; Deep learning; Spam mails; Earthworm optimization algorithm; Deep belief network; Bhattacharya distance

There are no references for this article.