Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper aims to compare different univariate forecasting methods to provide a more accurate short-term forecasting model on the crude oil price for rendering a reference to manages.Design/methodology/approachSix different univariate methods, namely the classical decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, the grey forecast, the hybrid grey model and the seasonal autoregressive integrated moving average (SARIMA), have been used.FindingsThe authors found that the grey forecast is a reliable forecasting method for crude oil prices.Originality/valueThe contribution of this research study is using a small size of data and comparing the forecasting results of the six univariate methods. Three commonly used evaluation criteria, mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percent error (MAPE), were adopted to evaluate the model performance. The outcome of this work can help predict the crude oil price.
Maritime Business Review – Emerald Publishing
Published: Mar 7, 2023
Keywords: Forecasting accuracy comparison; Univariate forecasting models; Crude oil price
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.