Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

Water infiltration in an aquifer recharge basin affected by temperature and air entrapment REFERENCESAl-Muttair, F.F., Al-Turbak, A.S., 1991. Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. Eng. Sci., 3, 89–100.Bouwer, H., 1999. Artificial recharge of groundwater: systems, design, and management. In: Hydraulic Design Handbook. Larry W. Mays, New York.Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10, 121–142. DOI: 10.1007/s10040-001-0182-4.10.1007/s10040-001-0182-4Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213–250.Constantz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Sci. Soc. Am. J., 46, 466–470.10.2136/sssaj1982.03615995004600030005xConstantz, J., Thomas, C.L., Zellweger, G., 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res., 30, 3253–3264.10.1029/94WR01968Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. http://dx.doi.org/10.1016/j.geoderma.2015.08.00610.1016/j.geoderma.2015.08.006Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12. DOI: 10.2136/vzj2012.0078.10.2136/vzj2012.0078http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317713300026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res., 31, 2421–2435. DOI: 10.1029/95WR01654.10.1029/95WR01654Gette-Bouvarot, M., Mermillod-Blondin, F., Angulo-Jaramillo, R., Delolme, C., Lemoine, D., Lassabatere, L., Loizeau, S., Volatier, L., 2014. Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology, 7, 950–964.10.1002/eco.1421http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337515300005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139. http://dx.doi.org/10.1016/j.enggeo.2013.09.00610.1016/j.enggeo.2013.09.006Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., Nützmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 20, 1409–1426. DOI: 10.1016/j.apgeochem.2005.03.002.10.1016/j.apgeochem.2005.03.002Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. 3-Dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.Heilweil, V.M., Solomon, D.K., Ortiz, G., 2009. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A. Boletin Geologico y Minero, 120, 185–196.Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego, USA, 771 p.Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Sci. Soc. Am. J., 54, 305–312.10.2136/sssaj1990.03615995005400020002xJoekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A., 2013. Trapping and hysteresis in two-phase flow in porous media: A pore-network study. Water Resour. Res., 49, 4244–4256. DOI:10.1002/wrcr.20313.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000323419100025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1002/wrcr.20313Kildsgaard, J., Engesgaard, P., 2001. Numerical analysis of biological clogging in two-dimensional sand box experiments. J. Contam. Hydrol., 50, 261–285. DOI: 10.1016/S0169-7722(01)00109-7.10.1016/S0169-7722(01)00109-7Köhne, J.M., Köhne, S., Šimůnek, J., 2009a. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4–35.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263441100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jconhyd.2008.10.002Köhne, J.M., Köhne, S., Šimůnek, J., 2009b. A review of model applications for structured soils: b) Pesticide transport. J. Contam. Hydrol., 104, 36–60.10.1016/j.jconhyd.2008.10.003http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263441100003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments- BEST. Soil Sci. Soc. Am. J., 70, 521–532.10.2136/sssaj2005.0026Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Simunek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res., 45.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272949300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. http://dx.doi.org/10.1016/j.geoderma.2010.02.03110.1016/j.geoderma.2010.02.031Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 67, 487–493.10.2136/sssaj2003.4870Loizeau, S., 2013. Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy. [Improvement of the understanding of hydrodynamic functioning of the Crépeiux-Chamy well field]. Université de Grenoble, Grenoble, 220 p.Marinas, M., Smith, J., Roy, J., 2009. The effects of disconnect entrapped air on hydraulic conductivity in the presence of water table fluctuations. In: AGU Spring Meeting Abstracts.Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res., 39, 1138. DOI:10.1029/2002WR001581.10.1029/2002WR001581Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285838400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Muskat, M., 1937. The Flow of Homogeneous Fluids Through Porous Media. Mac Graw Hill, New York.Nasta, P., Lassabatere, L., Kandelous, M.M., Simunek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Sci. Soc. Am. J., 76, 1999–2005.10.2136/sssaj2012.0117nhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312180100009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Okubo, T., Matsumoto, J., 1979. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res., 15, 1536–1542. DOI: 10.1029/WR015i006p01536.10.1029/WR015i006p01536Rai, S.N., Singh, R.N., 1985. Water table fluctuations in response to time varying recharge. (Proceedings of the Jerusalem Symposium Scientific Basis for Water Resources Management). IAHS Publ. no. 153. IAHS Press, Wallingford, pp. 287–294.Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318–333. DOI: 10.1063/1.1745010.10.1063/1.1745010Schuh, W.M., 1988. In-situ method for monitoring layered hydraulic impedance development during artificial recharge with turbid water. J. Hydrol., 101, 173–189. DOI: 10.1016/0022-1694(88)90034-0.10.1016/0022-1694(88)90034-0Schuh, W.M., 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol., 121, 193–215. DOI: 10.1016/0022-1694(90)90232-M.10.1016/0022-1694(90)90232-MSeymour, R.M., 2000. Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting. Irrig. Sci., 20, 9–14.10.1007/PL00006716Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.Sněhota, M., Císlerová, M., Gao Amin, M.H., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373–384. DOI: 10.2136/vzj2009.0103.10.2136/vzj2009.0103http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000277718000017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Stephens, D.B., Hsu, K.-C., Prieksat, M.A., Ankeny, M.D., Blandford, N., Roth, T.L., Kelsey, J.A., Whitworth, J.R., 1998. A comparison of estimated and calculated effective porosity. Hydrogeol. J., 6, 156–165.10.1007/s100400050141Tu, Y.-C., Ting, C.-S., Tsai, H.-T., Chen, J.-W., Lee, C.-H., 2011. Dynamic analysis of the infiltration rate of artificial recharge of groundwater: A case study of Wanglong Lake, Pingtung, Taiwan. Environ. Earth Sci., 63, 77–85. DOI: 10.1007/s12665-010-0670-8.10.1007/s12665-010-0670-8van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xVandenbohede, A., Van Houtte, E., 2012. Heat transport and temperature distribution during managed artificial recharge with surface ponds. J. Hydrol., 472–473, 77–89. DOI: 10.1016/j.jhydrol.2012.09.028.10.1016/j.jhydrol.2012.09.028http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312686300007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. J. Hydrol., 402, 367–376. DOI: 10.1016/j.jhydrol.2011.03.030.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000291192900018&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jhydrol.2011.03.030Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7, 125–137.Wangemann, S.G., Kohl, R.A., Molumeli, P.A., 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. Am. Soc. Agric. Eng., 43, 1517–1523.10.13031/2013.3051Winiarski, T., Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., 2013. Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the fluvio-glacial deposit. Procedia Environ. Sci., 19, 955–964. http://dx.doi.org/10.1016/j.proenv.2013.06.10510.1016/j.proenv.2013.06.105Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107–116.10.2136/vzj2009.0039http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000274392600012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J., 12, 2.10.2136/vzj2012.0121http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319393200007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrology and Hydromechanics de Gruyter

Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

Loading next page...
 
/lp/de-gruyter/water-infiltration-in-an-aquifer-recharge-basin-affected-by-dcnwNoygsq

References (63)

Publisher
de Gruyter
Copyright
© 2017 Sébastien Loizeau et al., published by De Gruyter Open
ISSN
0042-790X
eISSN
0042-790X
DOI
10.1515/johh-2017-0010
Publisher site
See Article on Publisher Site

Abstract

REFERENCESAl-Muttair, F.F., Al-Turbak, A.S., 1991. Modeling of infiltration from an artificial recharge basin with a decreasing ponded depth. J. King Saud Univ. Eng. Sci., 3, 89–100.Bouwer, H., 1999. Artificial recharge of groundwater: systems, design, and management. In: Hydraulic Design Handbook. Larry W. Mays, New York.Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol. J., 10, 121–142. DOI: 10.1007/s10040-001-0182-4.10.1007/s10040-001-0182-4Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thony, J.L., Ruelle, P., 1995. A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213–250.Constantz, J., 1982. Temperature dependence of unsaturated hydraulic conductivity of two soils. Soil Sci. Soc. Am. J., 46, 466–470.10.2136/sssaj1982.03615995004600030005xConstantz, J., Thomas, C.L., Zellweger, G., 1994. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour. Res., 30, 3253–3264.10.1029/94WR01968Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20–34. http://dx.doi.org/10.1016/j.geoderma.2015.08.00610.1016/j.geoderma.2015.08.006Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12. DOI: 10.2136/vzj2012.0078.10.2136/vzj2012.0078http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000317713300026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Faybishenko, B.A., 1995. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: laboratory experiments. Water Resour. Res., 31, 2421–2435. DOI: 10.1029/95WR01654.10.1029/95WR01654Gette-Bouvarot, M., Mermillod-Blondin, F., Angulo-Jaramillo, R., Delolme, C., Lemoine, D., Lassabatere, L., Loizeau, S., Volatier, L., 2014. Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology, 7, 950–964.10.1002/eco.1421http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000337515300005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139. http://dx.doi.org/10.1016/j.enggeo.2013.09.00610.1016/j.enggeo.2013.09.006Greskowiak, J., Prommer, H., Massmann, G., Johnston, C.D., Nützmann, G., Pekdeger, A., 2005. The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl. Geochem., 20, 1409–1426. DOI: 10.1016/j.apgeochem.2005.03.002.10.1016/j.apgeochem.2005.03.002Haverkamp, R., Ross, P.J., Smettem, K.R.J., Parlange, J.Y., 1994. 3-Dimensional analysis of infiltration from the disc infiltrometer. 2. Physically-based infiltration equation. Water Resour. Res., 30, 2931–2935.Heilweil, V.M., Solomon, D.K., Ortiz, G., 2009. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A. Boletin Geologico y Minero, 120, 185–196.Hillel, D., 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. Academic Press, San Diego, USA, 771 p.Jaynes, D.B., 1990. Temperature variations effect on field-measured infiltration. Soil Sci. Soc. Am. J., 54, 305–312.10.2136/sssaj1990.03615995005400020002xJoekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A., 2013. Trapping and hysteresis in two-phase flow in porous media: A pore-network study. Water Resour. Res., 49, 4244–4256. DOI:10.1002/wrcr.20313.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000323419100025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1002/wrcr.20313Kildsgaard, J., Engesgaard, P., 2001. Numerical analysis of biological clogging in two-dimensional sand box experiments. J. Contam. Hydrol., 50, 261–285. DOI: 10.1016/S0169-7722(01)00109-7.10.1016/S0169-7722(01)00109-7Köhne, J.M., Köhne, S., Šimůnek, J., 2009a. A review of model applications for structured soils: a) Water flow and tracer transport. J. Contam. Hydrol., 104, 4–35.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263441100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jconhyd.2008.10.002Köhne, J.M., Köhne, S., Šimůnek, J., 2009b. A review of model applications for structured soils: b) Pesticide transport. J. Contam. Hydrol., 104, 36–60.10.1016/j.jconhyd.2008.10.003http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000263441100003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments- BEST. Soil Sci. Soc. Am. J., 70, 521–532.10.2136/sssaj2005.0026Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J.M., Simunek, J., Haverkamp, R., 2009. Numerical evaluation of a set of analytical infiltration equations. Water Resour. Res., 45.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272949300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T., Delolme, C., 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma, 156, 316–325. http://dx.doi.org/10.1016/j.geoderma.2010.02.03110.1016/j.geoderma.2010.02.031Lin, C., Greenwald, D., Banin, A., 2003. Temperature dependence of infiltration rate during large scale water recharge into soils. Soil Sci. Soc. Am. J., 67, 487–493.10.2136/sssaj2003.4870Loizeau, S., 2013. Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy. [Improvement of the understanding of hydrodynamic functioning of the Crépeiux-Chamy well field]. Université de Grenoble, Grenoble, 220 p.Marinas, M., Smith, J., Roy, J., 2009. The effects of disconnect entrapped air on hydraulic conductivity in the presence of water table fluctuations. In: AGU Spring Meeting Abstracts.Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., Tabbagh, A., 2003. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res., 39, 1138. DOI:10.1029/2002WR001581.10.1029/2002WR001581Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285838400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Muskat, M., 1937. The Flow of Homogeneous Fluids Through Porous Media. Mac Graw Hill, New York.Nasta, P., Lassabatere, L., Kandelous, M.M., Simunek, J., Angulo-Jaramillo, R., 2012. Analysis of the role of tortuosity and infiltration constants in the Beerkan method. Soil Sci. Soc. Am. J., 76, 1999–2005.10.2136/sssaj2012.0117nhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312180100009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Okubo, T., Matsumoto, J., 1979. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res., 15, 1536–1542. DOI: 10.1029/WR015i006p01536.10.1029/WR015i006p01536Rai, S.N., Singh, R.N., 1985. Water table fluctuations in response to time varying recharge. (Proceedings of the Jerusalem Symposium Scientific Basis for Water Resources Management). IAHS Publ. no. 153. IAHS Press, Wallingford, pp. 287–294.Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. J. Appl. Phys., 1, 318–333. DOI: 10.1063/1.1745010.10.1063/1.1745010Schuh, W.M., 1988. In-situ method for monitoring layered hydraulic impedance development during artificial recharge with turbid water. J. Hydrol., 101, 173–189. DOI: 10.1016/0022-1694(88)90034-0.10.1016/0022-1694(88)90034-0Schuh, W.M., 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol., 121, 193–215. DOI: 10.1016/0022-1694(90)90232-M.10.1016/0022-1694(90)90232-MSeymour, R.M., 2000. Air entrapment and consolidation occurring with saturated hydraulic conductivity changes with intermittent wetting. Irrig. Sci., 20, 9–14.10.1007/PL00006716Šimůnek, J., Jarvis, N.J., van Genuchten, M.T., Gärdenäs, A., 2003. Review and comparison of models for describing nonequilibrium and preferential flow and transport in the vadose zone. J. Hydrol., 272, 14–35.Sněhota, M., Císlerová, M., Gao Amin, M.H., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 373–384. DOI: 10.2136/vzj2009.0103.10.2136/vzj2009.0103http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000277718000017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Stephens, D.B., Hsu, K.-C., Prieksat, M.A., Ankeny, M.D., Blandford, N., Roth, T.L., Kelsey, J.A., Whitworth, J.R., 1998. A comparison of estimated and calculated effective porosity. Hydrogeol. J., 6, 156–165.10.1007/s100400050141Tu, Y.-C., Ting, C.-S., Tsai, H.-T., Chen, J.-W., Lee, C.-H., 2011. Dynamic analysis of the infiltration rate of artificial recharge of groundwater: A case study of Wanglong Lake, Pingtung, Taiwan. Environ. Earth Sci., 63, 77–85. DOI: 10.1007/s12665-010-0670-8.10.1007/s12665-010-0670-8van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xVandenbohede, A., Van Houtte, E., 2012. Heat transport and temperature distribution during managed artificial recharge with surface ponds. J. Hydrol., 472–473, 77–89. DOI: 10.1016/j.jhydrol.2012.09.028.10.1016/j.jhydrol.2012.09.028http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000312686300007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Vogel, T., Dohnal, M., Votrubova, J., 2011. Modeling heat fluxes in macroporous soil under sparse young forest of temperate humid climate. J. Hydrol., 402, 367–376. DOI: 10.1016/j.jhydrol.2011.03.030.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000291192900018&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.jhydrol.2011.03.030Votrubová, J., Dohnal, M., Vogel, T., Tesař, M., 2012. On parameterization of heat conduction in coupled soil water and heat flow modelling. Soil Water Res. 7, 125–137.Wangemann, S.G., Kohl, R.A., Molumeli, P.A., 2000. Infiltration and percolation influenced by antecedent soil water content and air entrapment. Trans. Am. Soc. Agric. Eng., 43, 1517–1523.10.13031/2013.3051Winiarski, T., Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., 2013. Characterization of the heterogeneous flow and pollutant transfer in the unsaturated zone in the fluvio-glacial deposit. Procedia Environ. Sci., 19, 955–964. http://dx.doi.org/10.1016/j.proenv.2013.06.10510.1016/j.proenv.2013.06.105Yilmaz, D., Lassabatere, L., Angulo-Jaramillo, R., Deneele, D., Legret, M., 2010. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J., 9, 107–116.10.2136/vzj2009.0039http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000274392600012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Yilmaz, D., Lassabatere, L., Deneele, D., Angulo-Jaramillo, R., Legret, M., 2013. Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J., 12, 2.10.2136/vzj2012.0121http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000319393200007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3

Journal

Journal of Hydrology and Hydromechanicsde Gruyter

Published: Sep 1, 2017

There are no references for this article.