Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Validation of Automated Ultrasound-based Registration for Navigated Scaphoid Fixation

Validation of Automated Ultrasound-based Registration for Navigated Scaphoid Fixation AbstractFractures of the scaphoid bone may be treated in a minimally-invasive fashion. Conventionally, fluoroscopy is required to guide the placement of an osteosynthesis screw. In this work, an alternative method based on volumetric ultrasound is validated. Methods: The fully automatic and fast image processing pipeline involves two machine learning architectures for segmentation and registration. A pre-operatively acquired 3D bone model is registered to the 3D bone surface segmented from the intra-operative ultrasound. Screw positioning is planned in an automated fashion and evaluated in an in-vitro setting: Volumetric ultrasound images of a 3D-printed phantom of a human wrist are acquired for 22 different probe poses. For 220 test runs with different initial displacements, the resulting screw placement within a defined safe zone is evaluated. If the screw lies within the safe zone, its placement is assumed to be successful. Results: An isolated analysis of the registration results in a surface distance error of the registered meshes of 0.49 ± 0.01mm, with successful screw placement in all of the evaluated 220 test runs. The full pipeline, combining segmentation and registration, achieves a mean surface distance error of 0.79 ± 0.37mm, leading to successful screw placements for 149 out of 220 test runs. Poses not suited for the registration could be determined. Excluding these from the analysis, 139 out of 160 test runs are successful. Conclusion: The method proves to be promising when evaluating the registration alone, even given the challenging setup of sub-optimal probe positions. The experiments also demonstrate that further improvement regarding the segmentation is necessary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Directions in Biomedical Engineering de Gruyter

Validation of Automated Ultrasound-based Registration for Navigated Scaphoid Fixation

Loading next page...
 
/lp/de-gruyter/validation-of-automated-ultrasound-based-registration-for-navigated-SwNNPM8Vrs

References (13)

Publisher
de Gruyter
Copyright
© 2021 by Walter de Gruyter Berlin/Boston
eISSN
2364-5504
DOI
10.1515/cdbme-2021-1025
Publisher site
See Article on Publisher Site

Abstract

AbstractFractures of the scaphoid bone may be treated in a minimally-invasive fashion. Conventionally, fluoroscopy is required to guide the placement of an osteosynthesis screw. In this work, an alternative method based on volumetric ultrasound is validated. Methods: The fully automatic and fast image processing pipeline involves two machine learning architectures for segmentation and registration. A pre-operatively acquired 3D bone model is registered to the 3D bone surface segmented from the intra-operative ultrasound. Screw positioning is planned in an automated fashion and evaluated in an in-vitro setting: Volumetric ultrasound images of a 3D-printed phantom of a human wrist are acquired for 22 different probe poses. For 220 test runs with different initial displacements, the resulting screw placement within a defined safe zone is evaluated. If the screw lies within the safe zone, its placement is assumed to be successful. Results: An isolated analysis of the registration results in a surface distance error of the registered meshes of 0.49 ± 0.01mm, with successful screw placement in all of the evaluated 220 test runs. The full pipeline, combining segmentation and registration, achieves a mean surface distance error of 0.79 ± 0.37mm, leading to successful screw placements for 149 out of 220 test runs. Poses not suited for the registration could be determined. Excluding these from the analysis, 139 out of 160 test runs are successful. Conclusion: The method proves to be promising when evaluating the registration alone, even given the challenging setup of sub-optimal probe positions. The experiments also demonstrate that further improvement regarding the segmentation is necessary.

Journal

Current Directions in Biomedical Engineeringde Gruyter

Published: Aug 1, 2021

Keywords: Ultrasound imaging; machine learning; segmentation; registration; scaphoid fixation

There are no references for this article.