Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The Stable Matching (SM) algorithm has been deployed in many real-world scenarios including the National Residency Matching Program (NRMP) and financial applications such as matching of suppliers and consumers in capital markets. Since these applications typically involve highly sensitive information such as the underlying preference lists, their current implementations rely on trusted third parties. This paper introduces the first provably secure and scalable implementation of SM based on Yao’s garbled circuit protocol and Oblivious RAM (ORAM). Our scheme can securely compute a stable match for 8k pairs four orders of magnitude faster than the previously best known method. We achieve this by introducing a compact and efficient sub-linear size circuit. We even further decrease the computation cost by three orders of magnitude by proposing a novel technique to avoid unnecessary iterations in the SM algorithm. We evaluate our implementation for several problem sizes and plan to publish it as open-source.
Proceedings on Privacy Enhancing Technologies – de Gruyter
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.