Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes

Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different... AbstractReaction of Cd(NCS)2 with 4-methoxypyridine leads to the formation of four new compounds, of which one crystallizes in two different polymorphs. In Cd(NCS)2(4-methoxypyridine)4·(4-methoxypyridine)2 (1) and Cd(NCS)2(4-methoxypyridine)4 (2-I and 2-II) discrete complexes are found, in which the Cd cations are octahedrally coordinated by four 4-methoxypyridine co-ligands and two terminally N-bonded thiocyanate anions. For the polymorphs 2-I and 2-II no single crystals are available and therefore, the corresponding Mn(II) compound (2-I-Mn) was prepared, which is isotypic to 2-I, as proven by a Rietveld refinement. The crystal structure of 2-II was solved and refined from XRPD data. In [Cd(NCS)2(4-methoxypyridine)2]n (3), the Cd cations are also octahedrally coordinated but linked into linear chains by pairs of thiocyanate anions with all ligands in trans-position. {[Cd(NCS)2]3(4-methoxypyridine)5}n (4) also consists of chains but two different Cd coordination modes are observed. Two of the three crystallographically independent Cd cations show an octahedral coordination with a trans- or cis-arrangement of the N and S atoms of the anionic ligands, whereas the third one is in a distorted square-pyramidal coordination, with cis-coordination of the thiocyanate N and S atoms. Measurements using simultaneous thermogravimetry and differential scanning calorimetry of 2-I and 2-II show different heating rate dependent mass steps, in which the co-ligands are removed. In some of the residues obtained after the respective TG steps compound 3 was detected but no phase pure samples could be obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Zeitschrift für Naturforschung B de Gruyter

Synthesis, crystal structure and properties of Cd(NCS)2 coordination compounds with two different Cd coordination modes

Loading next page...
 
/lp/de-gruyter/synthesis-crystal-structure-and-properties-of-cd-ncs-2-coordination-Iq36siZYxa

References (46)

Publisher
de Gruyter
Copyright
©2019 Walter de Gruyter GmbH, Berlin/Boston
ISSN
0932-0776
eISSN
1865-7117
DOI
10.1515/znb-2018-0169
Publisher site
See Article on Publisher Site

Abstract

AbstractReaction of Cd(NCS)2 with 4-methoxypyridine leads to the formation of four new compounds, of which one crystallizes in two different polymorphs. In Cd(NCS)2(4-methoxypyridine)4·(4-methoxypyridine)2 (1) and Cd(NCS)2(4-methoxypyridine)4 (2-I and 2-II) discrete complexes are found, in which the Cd cations are octahedrally coordinated by four 4-methoxypyridine co-ligands and two terminally N-bonded thiocyanate anions. For the polymorphs 2-I and 2-II no single crystals are available and therefore, the corresponding Mn(II) compound (2-I-Mn) was prepared, which is isotypic to 2-I, as proven by a Rietveld refinement. The crystal structure of 2-II was solved and refined from XRPD data. In [Cd(NCS)2(4-methoxypyridine)2]n (3), the Cd cations are also octahedrally coordinated but linked into linear chains by pairs of thiocyanate anions with all ligands in trans-position. {[Cd(NCS)2]3(4-methoxypyridine)5}n (4) also consists of chains but two different Cd coordination modes are observed. Two of the three crystallographically independent Cd cations show an octahedral coordination with a trans- or cis-arrangement of the N and S atoms of the anionic ligands, whereas the third one is in a distorted square-pyramidal coordination, with cis-coordination of the thiocyanate N and S atoms. Measurements using simultaneous thermogravimetry and differential scanning calorimetry of 2-I and 2-II show different heating rate dependent mass steps, in which the co-ligands are removed. In some of the residues obtained after the respective TG steps compound 3 was detected but no phase pure samples could be obtained.

Journal

Zeitschrift für Naturforschung Bde Gruyter

Published: Jan 26, 2019

There are no references for this article.