Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Swelling potential of volcanic residual soils in Sumatra (Indonesia) in relation to environmental issues

Swelling potential of volcanic residual soils in Sumatra (Indonesia) in relation to environmental... AbstractSwelling potential characterization of clay-silt soil is an essential issue in stabilization, settlement, consolidation, and land suitability studies. This article attempts to explain the swelling characteristics of soils around the area of West Lampung, Lampung Province, Sumatra, Indonesia, in relation to environmental issues. An investigation in relation to the soil swelling potential was carried out using 15 disturbed soil samples collectd in the study area. The methods used were analyses of clay mineral geochemistry, physical characteristics, and the free swell ratio. These results showed that the soil in the study area was Quaternary tropical volcanic residual soil. These soils were formed in a proximal volcanic hydrothermal alteration environment. The soils of the study area have characteristics of high plasticity, a reddish-brown colour, and are clayey silt grained (MH) (USCS). The soils had loose physical characteristics in dry conditions; however, these soils tends to be plastic and sticky in wet conditions. Evidence of groove erosion was found at the soil surface. Based on XRD analysis, kaolinite, halloysite, and montmorillonite were types of clay minerals found in the soil. The soil had a clay content of 11.05–78.9%, a liquid limit value > 50%, a plasticity index value of 16.7–36.9%, a shrinkage value of 14.24–36.89%, a soil activity of 0.38–2.47; and an FSR value of 0.69–0.95. These characteristics have implications for swelling soil potential. The results showed that the soils in the study area had medium to very high swelling potential. These results suggest a risk of erosion in the area, which could cause soil degradation and a change in water quality. These soils are likely to affect land productivity and aquifer replenishment and will cause negative environmental and economic impacts. Thus, soil improvement techniques are needed. It is important to maintaining vegetative cover these soils and revegetation may be required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental & Socio-economic Studies de Gruyter

Swelling potential of volcanic residual soils in Sumatra (Indonesia) in relation to environmental issues

Loading next page...
 
/lp/de-gruyter/swelling-potential-of-volcanic-residual-soils-in-sumatra-indonesia-in-6xeqWGjACT

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
de Gruyter
Copyright
© 2020 Prahara Iqbal et al., published by Sciendo
ISSN
2354-0079
eISSN
2354-0079
DOI
10.2478/environ-2020-0019
Publisher site
See Article on Publisher Site

Abstract

AbstractSwelling potential characterization of clay-silt soil is an essential issue in stabilization, settlement, consolidation, and land suitability studies. This article attempts to explain the swelling characteristics of soils around the area of West Lampung, Lampung Province, Sumatra, Indonesia, in relation to environmental issues. An investigation in relation to the soil swelling potential was carried out using 15 disturbed soil samples collectd in the study area. The methods used were analyses of clay mineral geochemistry, physical characteristics, and the free swell ratio. These results showed that the soil in the study area was Quaternary tropical volcanic residual soil. These soils were formed in a proximal volcanic hydrothermal alteration environment. The soils of the study area have characteristics of high plasticity, a reddish-brown colour, and are clayey silt grained (MH) (USCS). The soils had loose physical characteristics in dry conditions; however, these soils tends to be plastic and sticky in wet conditions. Evidence of groove erosion was found at the soil surface. Based on XRD analysis, kaolinite, halloysite, and montmorillonite were types of clay minerals found in the soil. The soil had a clay content of 11.05–78.9%, a liquid limit value > 50%, a plasticity index value of 16.7–36.9%, a shrinkage value of 14.24–36.89%, a soil activity of 0.38–2.47; and an FSR value of 0.69–0.95. These characteristics have implications for swelling soil potential. The results showed that the soils in the study area had medium to very high swelling potential. These results suggest a risk of erosion in the area, which could cause soil degradation and a change in water quality. These soils are likely to affect land productivity and aquifer replenishment and will cause negative environmental and economic impacts. Thus, soil improvement techniques are needed. It is important to maintaining vegetative cover these soils and revegetation may be required.

Journal

Environmental & Socio-economic Studiesde Gruyter

Published: Dec 1, 2020

There are no references for this article.