Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer in Fibrous Organic Field Effect Transistor

Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer... Abstract The idea of wearable electronics automatically leads to the concept of integrating electronic functions on textile substrates. Since this substrate type implies certain challenges in comparison with their rigid electronic companions, it is of utmost importance to investigate the application of materials for generating the electronic functions on the textile substrate. Only when interaction of materials and textile substrate is fully understood, the electronic function can be generated on the textile without changing the textile’s properties, being flexible or stretchable. This research deals with the optimization of the dielectric layer in a fibrous organic field effect transistor (OFET). A transistor can act as an electrical switch in a circuit. In this work, the polyimide layer was dip-coated on a copper-coated polyester filament. After thoroughly investigating the process conditions, best results with minimal thickness and roughness at full insulation could be achieved at a dip-coating speed of 50 mm/min. The polyimide solution was optimal at 15w% and the choice for the solvent NMP was made. In this paper, details on the pre-treatment methods, choice of solvent and dip-coating speed and their effect on layer morphology and thickness, electrical properties and roughness are reported. Results show that the use of polyimide as a dielectric layer in the architecture of a fibrous OFET is promising. Further research deals with the application of the semiconductor layer within the mentioned architecture, to finally build an OFET on a filament for application in smart textiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autex Research Journal de Gruyter

Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer in Fibrous Organic Field Effect Transistor

Loading next page...
 
/lp/de-gruyter/surface-morphology-of-polyimide-thin-film-dip-coated-on-polyester-8eN0XS9HTq
Publisher
de Gruyter
Copyright
Copyright © 2014 by the
ISSN
2300-0929
eISSN
2300-0929
DOI
10.2478/aut-2014-0012
Publisher site
See Article on Publisher Site

Abstract

Abstract The idea of wearable electronics automatically leads to the concept of integrating electronic functions on textile substrates. Since this substrate type implies certain challenges in comparison with their rigid electronic companions, it is of utmost importance to investigate the application of materials for generating the electronic functions on the textile substrate. Only when interaction of materials and textile substrate is fully understood, the electronic function can be generated on the textile without changing the textile’s properties, being flexible or stretchable. This research deals with the optimization of the dielectric layer in a fibrous organic field effect transistor (OFET). A transistor can act as an electrical switch in a circuit. In this work, the polyimide layer was dip-coated on a copper-coated polyester filament. After thoroughly investigating the process conditions, best results with minimal thickness and roughness at full insulation could be achieved at a dip-coating speed of 50 mm/min. The polyimide solution was optimal at 15w% and the choice for the solvent NMP was made. In this paper, details on the pre-treatment methods, choice of solvent and dip-coating speed and their effect on layer morphology and thickness, electrical properties and roughness are reported. Results show that the use of polyimide as a dielectric layer in the architecture of a fibrous OFET is promising. Further research deals with the application of the semiconductor layer within the mentioned architecture, to finally build an OFET on a filament for application in smart textiles.

Journal

Autex Research Journalde Gruyter

Published: Sep 30, 2014

There are no references for this article.