Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Spectroscopic Characterization of Cobalt (II) Complexes with Reduced Low-Molar Dextran Derivatives

Spectroscopic Characterization of Cobalt (II) Complexes with Reduced Low-Molar Dextran Derivatives References1. Sibikina OV, Iozep AA, Moskvin AV. Polysaccharide complexes with metal cations: Structure and application (A review). Pharm Chem J 2009; 43: 341–5. https://doi.org/10.1007/s11094-009-0292-12. Gyurcsik B, Nagy L. Carbohydrates as ligands: Coordination equilibria and structure of the metal complexes. CoordChem Rev 2000; 203(1):81–149. https://doi.org/10.1016/S0010-8545(99)00183-63. Mitić Ž, Cakić M, Nikolić GM, et al. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-Vis, ATR-FTIR, and EPR. Carbohydr Res 2011; 346: 434–41. https://doi.org/10.1016/j.carres.2010.12.0114. Rudd TR, Skidmore MA, Guimond SE, et al. Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR, FTIR and EPR) spectroscopic techniques. Carbohydr Res 2008;343: 2184–93. https://doi.org/10.1016/j.carres.2007.12.0195. Ilić Lj, Ristić S, Cakić M, et al. Polynuclear complex Fe(III) with pullulan oligomers, process of its obtaining, and pharmaceutical preparations on the basis of the complex. EP 1363951 (A2); WO 0246241 (A2) 2003.6. Somsook E, Hinsin D, Buakhrong P, et al. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohydr Polym 2005;61: 281–7. https://doi.org/10.1016/j.carbpol.2005.04.0197. Bandwar RP, Flora SJS, Rao CP. Influence of zinc-saccharide complexes on some haematological parameters in rats. BioMetals 1997;10: 337–41. https://doi.org/10.1023/A:10183368194208. Luo Z, Zou J, Chen H, et al. Synthesis and characterization of amylose–zinc inclusion complexes. Carbohydr Polym 2016;137: 314–20. https://doi.org/10.1016/j.carbpol.2015.10.1009. Bankura KP, Maity D, Mollick MMR, et al. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 2012; 89: 1159–65. https://doi.org/10.1016/j.carbpol.2012.03.08910. Kanmani P,Lim ST. Synthesis and characterization of pullulan-mediated silvernanoparticles and its antimicrobial activities. Carbohydr Polym 2013; 97: 421–8. https://doi.org/10.1016/j.carbpol.2013.04.04811. Glišić S, Cakić M, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of carboxymethyl dextran stabilized silver nanoparticles. J Mol Struct 2015; 1084: 345–51. https://doi.org/10.1016/j.molstruc.2014.12.04812. Cakić M, Glišić S, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of dextran sulphatestabilized silver nanoparticles. J Mol Struct 2016; 1110: 156–61. https://doi.org/10.1016/j.molstruc.2016.01.04013. Okamoto S, Eltis LD. The biological occurence and trafficking of cobalt. Metallomics 2011; 3: 963–70. https://doi.org/10.1039/c1mt00056j14. Bandwar RP, Sastry MD, Kadam RM et al. Transition-metal saccharide chemistry: Synthesis and characterization of D-glucose, D-fructose, D-galactose, D-xylose, D-ribose, and maltose complexes of Co(II). Carbohydr Res 1997; 297: 333–9. https://doi.org/10.1016/S0008-6215(96)00285-615. Bondarenko OM, Ivask A, Kahru A, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nano-particles. CarbohydrPolym 2016; 136: 710–20. https://doi.org/10.1016/j.carbpol.2015.09.09316. Tratar Pirc E, Arčon I, Kodre A, et al. Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydr Res 2004; 339: 2549–54. https://doi.org/10.1016/j.carres.2004.07.02517. Mitić ŽJ, Nikolić GS, Cakić MD, et al. The investigation of Co(II)-dextran complexes. Hem Ind 2007; 61: 257–62. https://doi.org/10.2298/HEMIND0704257M18. Mitić Ž, Cakić M, Nikolić G. Fourier-Transform IR spectroscopic investigations of Cobalt(II)-dextran complexes by using D2O isotopic exchange. Spectroscopy 2010; 24: 269–75. https://doi.org/10.1155/2010/71246019. Tawfik SM, Hefni HH. Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant-metal(II) complexes. Int J BiolMacromol 2016; 82: 562–72. https://doi.org/10.1016/j.ijbiomac.2015.09.04320. Jeanes A. Dextrans and Pullulans: Industrially Significant α-D-Glucans, in: P.A. Sandford, A. Laskin, (Eds.), Extracellular Microbial Polysaccharides, ACS Symposium Series, No. 45, 1977: 284–96.21. Stanković RI, Jovanović S, Ilić Lj et al. Study of aqueous dextran solutions under high pressures and different temperatures by dynamic light scattering. Polymer 1991; 32: 235–40. https://doi.org/10.1016/0032-3861(91)90008-722. Bowman HW. Clinical evaluation of dextran as a plasma volume expander. J Am Med Assoc 1953; 153: 24–6. https://doi.org/10.1001/jama.1953.0294018002600923. De Belder AN. Dextran, Amersham Biosciences AB (Chapter 5), Uppsala, Sweden, 2003.24. Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostocdextransucrase and dextran: Production, properties and applications. JChem Tech Biotechnol 2005;80: 845–60. https://doi.org/10.1002/jctb.132225. De Aquino FWB, Franco DW. Formation of dextran deposits in Brazilian sugar cane spirits. J Agric Food Chem 2011; 59: 8249–8255. https://doi.org/10.1021/jf201041z26. Mitić Ž, Ph.D. Thesis, Synthesis and the spectra-structure correlation of some biometal complexes with dextran and pullulan, University of Niš, Serbia, 2009.27. Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 2012;87: 951–62. https://doi.org/10.1016/j.carbpol.2011.08.08328. Oshtrakh MI, Semionkin VA, Prokopenko PG et al. Hyperfine interactions in the iron cores from various pharmaceutically important iron-dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy. Int JBiolMacromol 2001; 29: 303–14. https://doi.org/10.1016/S0141-8130(01)00181-729. Cakić M, Mitić Ž, Nikolić G, et al. Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 2013; 8: 1253–63. https://doi.org/10.1517/17460441.2013.82524530. Yang L, Tian W, Xu Y, et al. Interactions between metal ions and carbohydrates: The coordination behavior of neutral erythritol to transition metal ions. J Inorg Biochem 2004; 98(:1284–92. https://doi.org/10.1016/j.jinorgbio.2004.04.01231. Bera M. Patra A. Study of potential binding of biologically important sugars with a dinuclearcobalt(II) complex. Carbohydr Res 2011;346:733–38. https://doi.org/10.1016/j.carres.2011.02.01032. Nikolić RS, Nikolić GM, Krstić NS. Spectroscopic study of paracetamol-biometal (M2+) ion complexes. EurJ Pharm Sci 2011;44: 187–8.33. Lever ABP. Inorganic Electronic Spectroscopy. 2nd ed.,Elsevier, New York, 1984.34. Jahn HA, Teller E. Proc. R. Soc. London, Ser. A 1937;161: 220–5. https://doi.org/10.1098/rspa.1937.014235. Mitić Ž, Nikolić G, Cakić M, et al. FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives. J Mol Struct 2009;924-6: 264–73. https://doi.org/10.1016/j.molstruc.2009.01.01936. Jeremić K, Ilić Lj, JovanovićS. Kinetics of dextran depolymerization in aqueous HCl. EurPolymJ1985; 21: 537–40.37. Somogyi M. A new reagent for the determination of sugars. J Biol Chem 1945; 160: 61–68.38. Shingel KI. Determination of structural peculiarities of dextran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 2002; 337: 1445–51. https://doi.org/10.1016/S0008-6215(02)00209-439. Wiberg E, Holleman AF, Wiberg N. Inorganic Chemistry, Academic Press, New York, 2001: 1478–9.40. Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. 4th ed. Wiley-Interscience, New York,1980.41. Bernhardt PV, Lawrance GA. Transition metal groups 9-12 Vol. 6, in:FentonDE. (Eds.), Comprehensive Coordination Chemistry II, 2nd ed., Elsevier-Pergamon, USA, 2003: 2–122.42. Bernhardt PV, Brik MG, Avram NM, Avram CN. Part III. Jahn-Teller Effect for the 3d Ions (Orbital Triplets in a Cubic Crystal Field), in:Köppel H, Yarkony DR, Barentzen H. (Eds.), The Jahn-Teller Effect Fundamentals and Implications for Physics and Chemistry, Berlin Heidelberg, Springer-Verlag, 2009: 347–70.43. Cakić M, Mitić Ž, Nikolić GS, et al. The investigations of bioactive copper(II) complexes with reduced low-molecular dextran. Spectroscopy 2008; 22: 177–85. https://doi.org/10.1155/2008/75474144. Berglund B, Lindgren J, Tegenfeldt J. O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates. J Mol Struct 1978; 43: 169–77. https://doi.org/10.1016/0022-2860(78)80004-045. Berglund B, Lindgren J, Tegenfeldt J. On the correlation between deuteron quadrupole coupling constants, O-H and O-D stretching frequencies and hydrogen-bond distances in solid hydrates. J Mol Struct 1978; 43: 179–91. https://doi.org/10.1016/0022-2860(78)80005-246. Brink G, Falk M. Infrared studies of water in crystalline hydrates: Ba (NO2)2•H2O. Spectrochim-Acta A 1971; 27: 1811–15. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Facultatis Medicae Naissensis de Gruyter

Spectroscopic Characterization of Cobalt (II) Complexes with Reduced Low-Molar Dextran Derivatives

Loading next page...
 
/lp/de-gruyter/spectroscopic-characterization-of-cobalt-ii-complexes-with-reduced-low-y2obkqoYKe
Publisher
de Gruyter
Copyright
© 2018 Žarko Mitić et al., published by De Gruyter Open
ISSN
2217-2521
eISSN
2217-2521
DOI
10.2478/afmnai-2018-0004
Publisher site
See Article on Publisher Site

Abstract

References1. Sibikina OV, Iozep AA, Moskvin AV. Polysaccharide complexes with metal cations: Structure and application (A review). Pharm Chem J 2009; 43: 341–5. https://doi.org/10.1007/s11094-009-0292-12. Gyurcsik B, Nagy L. Carbohydrates as ligands: Coordination equilibria and structure of the metal complexes. CoordChem Rev 2000; 203(1):81–149. https://doi.org/10.1016/S0010-8545(99)00183-63. Mitić Ž, Cakić M, Nikolić GM, et al. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-Vis, ATR-FTIR, and EPR. Carbohydr Res 2011; 346: 434–41. https://doi.org/10.1016/j.carres.2010.12.0114. Rudd TR, Skidmore MA, Guimond SE, et al. Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR, FTIR and EPR) spectroscopic techniques. Carbohydr Res 2008;343: 2184–93. https://doi.org/10.1016/j.carres.2007.12.0195. Ilić Lj, Ristić S, Cakić M, et al. Polynuclear complex Fe(III) with pullulan oligomers, process of its obtaining, and pharmaceutical preparations on the basis of the complex. EP 1363951 (A2); WO 0246241 (A2) 2003.6. Somsook E, Hinsin D, Buakhrong P, et al. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohydr Polym 2005;61: 281–7. https://doi.org/10.1016/j.carbpol.2005.04.0197. Bandwar RP, Flora SJS, Rao CP. Influence of zinc-saccharide complexes on some haematological parameters in rats. BioMetals 1997;10: 337–41. https://doi.org/10.1023/A:10183368194208. Luo Z, Zou J, Chen H, et al. Synthesis and characterization of amylose–zinc inclusion complexes. Carbohydr Polym 2016;137: 314–20. https://doi.org/10.1016/j.carbpol.2015.10.1009. Bankura KP, Maity D, Mollick MMR, et al. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 2012; 89: 1159–65. https://doi.org/10.1016/j.carbpol.2012.03.08910. Kanmani P,Lim ST. Synthesis and characterization of pullulan-mediated silvernanoparticles and its antimicrobial activities. Carbohydr Polym 2013; 97: 421–8. https://doi.org/10.1016/j.carbpol.2013.04.04811. Glišić S, Cakić M, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of carboxymethyl dextran stabilized silver nanoparticles. J Mol Struct 2015; 1084: 345–51. https://doi.org/10.1016/j.molstruc.2014.12.04812. Cakić M, Glišić S, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of dextran sulphatestabilized silver nanoparticles. J Mol Struct 2016; 1110: 156–61. https://doi.org/10.1016/j.molstruc.2016.01.04013. Okamoto S, Eltis LD. The biological occurence and trafficking of cobalt. Metallomics 2011; 3: 963–70. https://doi.org/10.1039/c1mt00056j14. Bandwar RP, Sastry MD, Kadam RM et al. Transition-metal saccharide chemistry: Synthesis and characterization of D-glucose, D-fructose, D-galactose, D-xylose, D-ribose, and maltose complexes of Co(II). Carbohydr Res 1997; 297: 333–9. https://doi.org/10.1016/S0008-6215(96)00285-615. Bondarenko OM, Ivask A, Kahru A, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nano-particles. CarbohydrPolym 2016; 136: 710–20. https://doi.org/10.1016/j.carbpol.2015.09.09316. Tratar Pirc E, Arčon I, Kodre A, et al. Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydr Res 2004; 339: 2549–54. https://doi.org/10.1016/j.carres.2004.07.02517. Mitić ŽJ, Nikolić GS, Cakić MD, et al. The investigation of Co(II)-dextran complexes. Hem Ind 2007; 61: 257–62. https://doi.org/10.2298/HEMIND0704257M18. Mitić Ž, Cakić M, Nikolić G. Fourier-Transform IR spectroscopic investigations of Cobalt(II)-dextran complexes by using D2O isotopic exchange. Spectroscopy 2010; 24: 269–75. https://doi.org/10.1155/2010/71246019. Tawfik SM, Hefni HH. Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant-metal(II) complexes. Int J BiolMacromol 2016; 82: 562–72. https://doi.org/10.1016/j.ijbiomac.2015.09.04320. Jeanes A. Dextrans and Pullulans: Industrially Significant α-D-Glucans, in: P.A. Sandford, A. Laskin, (Eds.), Extracellular Microbial Polysaccharides, ACS Symposium Series, No. 45, 1977: 284–96.21. Stanković RI, Jovanović S, Ilić Lj et al. Study of aqueous dextran solutions under high pressures and different temperatures by dynamic light scattering. Polymer 1991; 32: 235–40. https://doi.org/10.1016/0032-3861(91)90008-722. Bowman HW. Clinical evaluation of dextran as a plasma volume expander. J Am Med Assoc 1953; 153: 24–6. https://doi.org/10.1001/jama.1953.0294018002600923. De Belder AN. Dextran, Amersham Biosciences AB (Chapter 5), Uppsala, Sweden, 2003.24. Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostocdextransucrase and dextran: Production, properties and applications. JChem Tech Biotechnol 2005;80: 845–60. https://doi.org/10.1002/jctb.132225. De Aquino FWB, Franco DW. Formation of dextran deposits in Brazilian sugar cane spirits. J Agric Food Chem 2011; 59: 8249–8255. https://doi.org/10.1021/jf201041z26. Mitić Ž, Ph.D. Thesis, Synthesis and the spectra-structure correlation of some biometal complexes with dextran and pullulan, University of Niš, Serbia, 2009.27. Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 2012;87: 951–62. https://doi.org/10.1016/j.carbpol.2011.08.08328. Oshtrakh MI, Semionkin VA, Prokopenko PG et al. Hyperfine interactions in the iron cores from various pharmaceutically important iron-dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy. Int JBiolMacromol 2001; 29: 303–14. https://doi.org/10.1016/S0141-8130(01)00181-729. Cakić M, Mitić Ž, Nikolić G, et al. Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 2013; 8: 1253–63. https://doi.org/10.1517/17460441.2013.82524530. Yang L, Tian W, Xu Y, et al. Interactions between metal ions and carbohydrates: The coordination behavior of neutral erythritol to transition metal ions. J Inorg Biochem 2004; 98(:1284–92. https://doi.org/10.1016/j.jinorgbio.2004.04.01231. Bera M. Patra A. Study of potential binding of biologically important sugars with a dinuclearcobalt(II) complex. Carbohydr Res 2011;346:733–38. https://doi.org/10.1016/j.carres.2011.02.01032. Nikolić RS, Nikolić GM, Krstić NS. Spectroscopic study of paracetamol-biometal (M2+) ion complexes. EurJ Pharm Sci 2011;44: 187–8.33. Lever ABP. Inorganic Electronic Spectroscopy. 2nd ed.,Elsevier, New York, 1984.34. Jahn HA, Teller E. Proc. R. Soc. London, Ser. A 1937;161: 220–5. https://doi.org/10.1098/rspa.1937.014235. Mitić Ž, Nikolić G, Cakić M, et al. FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives. J Mol Struct 2009;924-6: 264–73. https://doi.org/10.1016/j.molstruc.2009.01.01936. Jeremić K, Ilić Lj, JovanovićS. Kinetics of dextran depolymerization in aqueous HCl. EurPolymJ1985; 21: 537–40.37. Somogyi M. A new reagent for the determination of sugars. J Biol Chem 1945; 160: 61–68.38. Shingel KI. Determination of structural peculiarities of dextran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 2002; 337: 1445–51. https://doi.org/10.1016/S0008-6215(02)00209-439. Wiberg E, Holleman AF, Wiberg N. Inorganic Chemistry, Academic Press, New York, 2001: 1478–9.40. Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. 4th ed. Wiley-Interscience, New York,1980.41. Bernhardt PV, Lawrance GA. Transition metal groups 9-12 Vol. 6, in:FentonDE. (Eds.), Comprehensive Coordination Chemistry II, 2nd ed., Elsevier-Pergamon, USA, 2003: 2–122.42. Bernhardt PV, Brik MG, Avram NM, Avram CN. Part III. Jahn-Teller Effect for the 3d Ions (Orbital Triplets in a Cubic Crystal Field), in:Köppel H, Yarkony DR, Barentzen H. (Eds.), The Jahn-Teller Effect Fundamentals and Implications for Physics and Chemistry, Berlin Heidelberg, Springer-Verlag, 2009: 347–70.43. Cakić M, Mitić Ž, Nikolić GS, et al. The investigations of bioactive copper(II) complexes with reduced low-molecular dextran. Spectroscopy 2008; 22: 177–85. https://doi.org/10.1155/2008/75474144. Berglund B, Lindgren J, Tegenfeldt J. O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates. J Mol Struct 1978; 43: 169–77. https://doi.org/10.1016/0022-2860(78)80004-045. Berglund B, Lindgren J, Tegenfeldt J. On the correlation between deuteron quadrupole coupling constants, O-H and O-D stretching frequencies and hydrogen-bond distances in solid hydrates. J Mol Struct 1978; 43: 179–91. https://doi.org/10.1016/0022-2860(78)80005-246. Brink G, Falk M. Infrared studies of water in crystalline hydrates: Ba (NO2)2•H2O. Spectrochim-Acta A 1971; 27: 1811–15.

Journal

Acta Facultatis Medicae Naissensisde Gruyter

Published: Mar 1, 2018

There are no references for this article.