Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. We show that some problems in information security can be solved without using one-way functions. The latter are usually regarded as a central concept of cryptography, but the very existence of one-way functions depends on difficult conjectures in complexity theory, most notably on the notorious “ ” conjecture. This is why cryptographic primitives that do not employ one-way functions are often called “unconditionally secure”. In this paper, we suggest protocols for secure computation of the sum, product, and some other functions of two or more elements of an arbitrary constructible ring, without using any one-way functions. A new input that we offer here is that, in contrast with other proposals, we conceal “intermediate results” of a computation. For example, when we compute the sum of k numbers, only the final result is known to the parties; partial sums are not known to anybody. Other applications of our method include voting/rating over insecure channels and a rather elegant and efficient solution of the “two millionaires problem”. Then, while it is fairly obvious that a secure (bit) commitment between two parties is impossible without a one-way function, we show that it is possible if the number of parties is at least 3. We also show how our unconditionally secure (bit) commitment scheme for three parties can be used to arrange an unconditionally secure (bit) commitment between just two parties if they use a “dummy” (e.g., a computer) as the third party. We explain how our concept of a “dummy” is different from the well-known concept of a “trusted third party”. Based on a similar idea, we also offer an unconditionally secure k - n oblivious transfer protocol between two parties who use a “dummy”. We also suggest a protocol, without using a one-way function, for the so-called “mental poker”, i.e., a fair card dealing (and playing) over distance. Finally, we propose a secret sharing scheme where an advantage over Shamir's and other known secret sharing schemes is that nobody, including the dealer, ends up knowing the shares (of the secret) owned by any particular player. It should be mentioned that computational cost of our protocols is negligible to the point that all of them can be executed without a computer.
Groups Complexity Cryptology – de Gruyter
Published: May 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.