Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Scale-dependent co-occurrence patterns of closely related genotypes in a lichen species complex

Scale-dependent co-occurrence patterns of closely related genotypes in a lichen species complex AbstractThe ‘competition-relatedness’ hypothesis postulates that co-occurring taxa should be more distantly related, because of lower competition. This hypothesis has been criticized for its dependence on untested assumptions and its exclusion of other assembly forces beyond competition and habitat filtering to explain the co-existence of closely related taxa. Here we analyzed the patterns of co-occurring individuals of lichenized fungi in the Graphis scripta complex, a monophyletic group of species occurring in temperate forests throughout the Northern Hemisphere. We generated sequences for three nuclear ribosomal and protein markers (nuLSU, RPB2, EF-1) and combined them with previously generated sequences to reconstruct an updated phylogeny for the complex. The resulting phylogeny was used to determine the patterns of co-occurrences at regional and at sample (tree) scales by calculating standard effect size of mean pairwise distance (SES.MPD) among co-occurring samples to determine whether they were more clustered than expected from chance. The resulting phylogeny revealed multiple distinct lineages, suggesting the presence of several phylogenetic species in this complex. At the regional and local (site) levels, SES.MPD exhibited significant clustering for five out of six regions. The sample (tree) scale SES. MPD values also suggested some clustering but the corresponding metrics did not deviate significantly from the null expectation. The differences in the SES.MPD values and their significance indicated that habitat filtering and/or local diversification may be operating at the regional level, while the local assemblies on each tree are interpreted as being the result of local competition or random colonization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant and Fungal Systematics de Gruyter

Scale-dependent co-occurrence patterns of closely related genotypes in a lichen species complex

Loading next page...
 
/lp/de-gruyter/scale-dependent-co-occurrence-patterns-of-closely-related-genotypes-in-EDfbNFDxxW

References (91)

Publisher
de Gruyter
Copyright
© 2019 Ekaphan Kraichak et al., published by Sciendo
eISSN
2544-7459
DOI
10.2478/pfs-2019-0017
Publisher site
See Article on Publisher Site

Abstract

AbstractThe ‘competition-relatedness’ hypothesis postulates that co-occurring taxa should be more distantly related, because of lower competition. This hypothesis has been criticized for its dependence on untested assumptions and its exclusion of other assembly forces beyond competition and habitat filtering to explain the co-existence of closely related taxa. Here we analyzed the patterns of co-occurring individuals of lichenized fungi in the Graphis scripta complex, a monophyletic group of species occurring in temperate forests throughout the Northern Hemisphere. We generated sequences for three nuclear ribosomal and protein markers (nuLSU, RPB2, EF-1) and combined them with previously generated sequences to reconstruct an updated phylogeny for the complex. The resulting phylogeny was used to determine the patterns of co-occurrences at regional and at sample (tree) scales by calculating standard effect size of mean pairwise distance (SES.MPD) among co-occurring samples to determine whether they were more clustered than expected from chance. The resulting phylogeny revealed multiple distinct lineages, suggesting the presence of several phylogenetic species in this complex. At the regional and local (site) levels, SES.MPD exhibited significant clustering for five out of six regions. The sample (tree) scale SES. MPD values also suggested some clustering but the corresponding metrics did not deviate significantly from the null expectation. The differences in the SES.MPD values and their significance indicated that habitat filtering and/or local diversification may be operating at the regional level, while the local assemblies on each tree are interpreted as being the result of local competition or random colonization.

Journal

Plant and Fungal Systematicsde Gruyter

Published: Dec 1, 2019

There are no references for this article.