Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, a connection between rewriting systems and embedding of monoids in groups is found. We show that if a group with a positive presentation has a complete rewriting system ℜ that satisfies the condition that each rule in ℜ with positive left-hand side has a positive right-hand side, then the monoid presented by the subset of positive rules from ℜ embeds in the group. As an example, we give a simple proof that right angled Artin monoids embed in the corresponding right angled Artin groups. This is a special case of the well-known result of Paris that Artin monoids embed in their groups.
Groups - Complexity - Cryptology – de Gruyter
Published: Apr 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.