Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Research of Formed Lunar Regholit Analog AGK-2010 / Badania wytworzonego analogu gruntu księżycowego AGK-2010

Research of Formed Lunar Regholit Analog AGK-2010 / Badania wytworzonego analogu gruntu... Arch. Min. Sci., Vol. 58 (2013), No 2, p. 551­556 Electronic version (in color) of this paper is available: http://mining.archives.pl DOI 10.2478/amsc-2013-0037 STANISLAW BEDNARZ*, MIROSLAW RZYCZNIAK*, ANDRZEJ GONET*, KAROL SEWERYN** RESEARCH OF FORMED LUNAR REGHOLIT ANALOG AGK-2010 BADANIA WYTWORZONEGO ANALOGU GRUNTU KSIYCOWEGO AGK-2010 The results investigations of a soil having similar properties as lunar regolith performed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków are presented in this paper. The research was carried out jointly with the Space Research Centre, Polish Academy of Sciences in Warsaw. The objective of the cooperation was to minimize the cost of tests of penetrator KRET, which will be used on the surface of the Moon. The American lunar regolith (e.g. CHENOBI) was used as reference soil. The most important properties were presented graphically in the form of figures and tables: grain size distribution, selected physical properties (bulk density, colour), selected mechanical parameters (shear strength, inner friction strength, cohesion). As a result the first Polish lunar soil analog AGK-2010 was produced. Keywords: Lunar regolith, lunar regolith analog, lunar soil analog Pierwszy polski analog gruntu ksiycowego, któremu nadano symbol AGK-2010, opracowano w Katedrze Wiertnictwa i Geoinynierii na Wydziale Wiertnictwa, Nafty i Gazu Akademii Górniczo-Hutniczej im. Stanislawa Staszica w Krakowie. Grunt ten zostal wytworzony w ramach wspólpracy z Centrum Bada Kosmicznych Polskiej Akademii Nauk w Warszawie. Celem bada bylo zminimalizowanie kosztów prowadzonych przez CBK PAN testów penetratora KRET (Seweryn i in., 2011), przygotowywanego do bada powierzchni Ksiyca, poprzez zastpienie, produkowanego w Stanach Zjednoczonych, analogu regolitu ksiycowego, gruntem produkcji krajowej. Prób wzorcow stanowily grunty o nazwie CHENOBI i JSC, produkowane w USA jako analogi regolitu ksiycowego pobranego z powierzchni Ksiyca przez misj Apollo 17 (Rybus, 2009), (Sibille i in., 2006). Podstawowymi wlaciwociami, których wartoci porównywano opracowujc polski odpowiednik analogu regolitu ksiycowego CHENOBI byly: sklad granulometryczny, wlaciwoci fizyczne (gsto * ** AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF DRILLING, OIL AND GAS, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND. SPACE RESEARCH CENTRE POLISH ACADEMY OF SCIENCES, UL. BARTYCKA 18A, 00-716 WARSZAWA, POLAND. nasypowa, barwa), wlaciwoci mechaniczne (wytrzymalo na cinanie, kt tarcia wewntrznego, kohezja), (PN-EN ISO 14688-1, 2006). Istotn dla procesu badawczego wskazówk stanowila informacja, o ostrokrawdzistoci ziarn mineralów regolitu ksiycowego (Rybus T., 2009), (Sibille i in., 2006). W artykule, w formie graficznej oraz zestawie tabelarycznych, zestawiono wartoci najistotniejszych, dla porówna dwóch gruntów, wielkoci takich jak: sklad granulometryczny (rys. 1), charakterystyki krzywych uziarnienia (tab. 1), wybrane wlaciwoci fizyczne, np. gsto nasypowa, barwa (pkt. 2), parametry mechaniczne, takie jak wytrzymalo na cinanie, kt tarcia wewntrznego i kohezja (rys. 2 i 3, tab. 2). Istotnym osigniciem prowadzonych bada bylo uzyskanie polskiego zamiennika gruntu ksiycowego, którego jednostkowy koszt wytworzenia jest wielokrotnie mniejszy od jednostkowego kosztu zakupu gruntu wzorcowego. Opracowany, polski analog gruntu ksiycowego AGK-2010 (zgloszony do Urzdu Patentowego w 2011 r.) zostal z powodzeniem wdroony w testach penetratora KRET w Centrum Bada Kosmicznych Polskiej Akademii Nauk w Warszawie. Slowa kluczowe: regolit ksiycowy, analog regolitu ksiycowego, analog gruntu ksiycowego Denotations cs d R2 s o f s ­ ­ ­ ­ ­ ­ ­ ­ cohesion, kPa, mesh, m, determination coefficient, standard deviation, kg/l, soil bulk density, kg/l, normal stress, kPa, shear strength, kPa, inner friction angle, o. Introduction The first Polish lunar soil analog, labeled AGK-2010, was designed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków (AGH-UST) in co-operation with the Space Research Centre, Polish Academy of Sciences in Warsaw (SRC PAS). The objective of the investigations was to minimize the cost of tests of a penetrator KRET performed by SRC PAS (Seweryn et al., 2011), which was prepared for tests on the Moon surface. During the tests, the American lunar analog was to be substituted by a Polish lunar regolith analog. The soil CHENOBI and JSC produced as in the U.S.A. as analogs of lunar soil collected by Apollo 17 was used as references (Rybus, 2009; Sibille et al., 2006). Among the basic properties, the values of which were compared when working on the Polish counterpart of lunar regolith analog CHENOBI were: grain-size distribution, physical properties (bulk density, colour), mechanical properties (shear strength, inner friction angle, cohesion), (PN-EN ISO 14688-1, 2006). It was important for the study to know that the grains of the lunar regolith mineral were sharp-edged (Rybus, 2009; Sibille et al., 2006). The results of analyses of reference lunar regolith analog CHENOBI sample and the Polish lunar soil analog AGK-2010 were compared. 1. Grain-size distribution The grain-size distribution for the lunar regolith analog CHENOBI and Polish lunar soil analog AGK-2010 was determined with the use of the sieve method in line with PN-EN 933-1 (2000). The reference grain-size curves were presented in Fig. 1. 100 90 Grain-size content < d, % 80 70 60 50 40 30 20 10 0 10 100 Mesh d, m Fig. 1. Grain-size distribution plot: lunar regolith analog CHENOBI ­ dashed line; lunar soil analog AGK-2010 ­ solid line (Bednarz, 2009, 2011) CHENOBI AGK 2010 The values of specific granulation plots, determined in accordance with PN-EN ISO 14688-2 (2006), are listed in table 1. TABLE 1 Characteristic of grain-size distribution of lunar regolith analog CHENOBI and lunar soil analog AGK-2010 (Bednarz et al., 2009, 2011) Soil Uniformity coefficient, Cu Curvature, Cc CHENOBI AGK-2010 The analysis of grain size distribution and granulation curves revealed that soils compared in line with PN-EN ISO 14688-2 (2006) are single-fraction clayey sands (siSa). 2. Physical properties The bulk density of analyzed soils was determined according to with the standard PN-EN 1097-3 (2000). As a result the following bulk density values were obtained: o = 1.314 kg/l ­ for lunar regolith analog CHENOBI, (standard deviation s = 0.0067 kg/l), o = 1.295 kg/l ­ for lunar soil analog AGK-2010, (standard deviation s = 0.0097 kg/l). The value of bulk density for soil AGK-2010 is lower than for lunar regolith analog CHENOBI only by about 1.45%. The authors used a selection of raw minerals for making lunar soil analog AGK-2010. As a result they obtained a multicomponent soil of grey-light grey color, resembling that of reference soil (Bednarz et al., 2009; Kömle et al., 2008). 3. Mechanical properties The mechanical properties of reference soil and the worked out lunar soil analog AGK2010 were compared in compliance with standard PN-B04481:1988 (1988), using the ground shear tests. The plots of shear tests values f vs. changes of normal stresses are presented in figs. 2 and 3. As a result of the tests, the values of internal friction angle s and cohesion cs were determined (figs. 2 and 3, tab. 2). Shear strength f , kPa Normal stress cs = 3,78 kPa o s = 37,27 CHENOBI , kPa Fig. 2. Shear strength of lunar regolith analog CHENOBI (Bednarz, 2009, 2011): cohesion cs = 3.78 kPa; inner friction angle s = 37.27° 350 , kPa 300 250 200 150 100 50 0 0 100 200 300 , kPa 400 500 AGK 2010 Shear strength cs = 3,85 kPa s = 37,67 Normal stress Fig. 3. Shear strength of lunar soil analog AGK-2010: (Bednarz, 2009, 2011): cohesion cs = 3.85 kPa; inner friction angle s = 37.67° TABLE 2 Mechanical properties of lunar regolith analogs CHENOBI and lunar soil analog AGK-2010 (Bednarz, 2009, 2011) Soil Trend line equation Determination coefficient R2 Cohesion cs, kPa Inner friction angle s , ° CHENOBI AGK-2010 f = 0.76 + 3.78 f = 0.77 + 3.85 The obtained courses for f = f () and values of cohesion cs and inner friction angle s show to a resemblence of analyzed mechanical properties of compared soils. 4. Economical aspect Considerable reduction of cost of making the lunar soil analog AGK-2010 was obtained by using components appearing in Polish geological conditions and/or components produced by home raw mineral producers. As a result, the cost of 1 kg of lunar soil analog AGK-2010 made in Polish conditions was many times lower than the price of 1 kg of lunar regolith analog CHENOBI. This aspect was of special importance in a situation when several tons of analog have to be used. 5. Conclusions 1. Investigations carried out at the Faculty of Drilling, Oil and Gas AGH University of Science and Technology in Kraków resulted in working out lunar soil analog AGK-2010, having similar properties as lunar regolith analog CHENOBI, frequently used in researches all over the World. 2. The lunar regolith analog AGK-2010 is a variant of lunar soil substitute, which can be modified if new properties of lunar soil are found. 3. It was important to produce a Polish counterpart of lunar soil, the unit cost of which was many times lower than the price of reference lunar soil. 4. The Polish lunar soil analog AGK-2010 (patent application of 2011) was successfully implemented during tests on penetrator KRET in the Space Research Center, Polish Academy of Sciences in Warsaw. Publication realized within contract no. 11.11.190.555 Publication realized within contract no. 4.4.190.2007 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Mining Sciences de Gruyter

Research of Formed Lunar Regholit Analog AGK-2010 / Badania wytworzonego analogu gruntu księżycowego AGK-2010

Loading next page...
 
/lp/de-gruyter/research-of-formed-lunar-regholit-analog-agk-2010-badania-wytworzonego-cnWjzk6pGr
Publisher
de Gruyter
Copyright
Copyright © 2013 by the
ISSN
0860-7001
DOI
10.2478/amsc-2013-0037
Publisher site
See Article on Publisher Site

Abstract

Arch. Min. Sci., Vol. 58 (2013), No 2, p. 551­556 Electronic version (in color) of this paper is available: http://mining.archives.pl DOI 10.2478/amsc-2013-0037 STANISLAW BEDNARZ*, MIROSLAW RZYCZNIAK*, ANDRZEJ GONET*, KAROL SEWERYN** RESEARCH OF FORMED LUNAR REGHOLIT ANALOG AGK-2010 BADANIA WYTWORZONEGO ANALOGU GRUNTU KSIYCOWEGO AGK-2010 The results investigations of a soil having similar properties as lunar regolith performed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków are presented in this paper. The research was carried out jointly with the Space Research Centre, Polish Academy of Sciences in Warsaw. The objective of the cooperation was to minimize the cost of tests of penetrator KRET, which will be used on the surface of the Moon. The American lunar regolith (e.g. CHENOBI) was used as reference soil. The most important properties were presented graphically in the form of figures and tables: grain size distribution, selected physical properties (bulk density, colour), selected mechanical parameters (shear strength, inner friction strength, cohesion). As a result the first Polish lunar soil analog AGK-2010 was produced. Keywords: Lunar regolith, lunar regolith analog, lunar soil analog Pierwszy polski analog gruntu ksiycowego, któremu nadano symbol AGK-2010, opracowano w Katedrze Wiertnictwa i Geoinynierii na Wydziale Wiertnictwa, Nafty i Gazu Akademii Górniczo-Hutniczej im. Stanislawa Staszica w Krakowie. Grunt ten zostal wytworzony w ramach wspólpracy z Centrum Bada Kosmicznych Polskiej Akademii Nauk w Warszawie. Celem bada bylo zminimalizowanie kosztów prowadzonych przez CBK PAN testów penetratora KRET (Seweryn i in., 2011), przygotowywanego do bada powierzchni Ksiyca, poprzez zastpienie, produkowanego w Stanach Zjednoczonych, analogu regolitu ksiycowego, gruntem produkcji krajowej. Prób wzorcow stanowily grunty o nazwie CHENOBI i JSC, produkowane w USA jako analogi regolitu ksiycowego pobranego z powierzchni Ksiyca przez misj Apollo 17 (Rybus, 2009), (Sibille i in., 2006). Podstawowymi wlaciwociami, których wartoci porównywano opracowujc polski odpowiednik analogu regolitu ksiycowego CHENOBI byly: sklad granulometryczny, wlaciwoci fizyczne (gsto * ** AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF DRILLING, OIL AND GAS, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND. SPACE RESEARCH CENTRE POLISH ACADEMY OF SCIENCES, UL. BARTYCKA 18A, 00-716 WARSZAWA, POLAND. nasypowa, barwa), wlaciwoci mechaniczne (wytrzymalo na cinanie, kt tarcia wewntrznego, kohezja), (PN-EN ISO 14688-1, 2006). Istotn dla procesu badawczego wskazówk stanowila informacja, o ostrokrawdzistoci ziarn mineralów regolitu ksiycowego (Rybus T., 2009), (Sibille i in., 2006). W artykule, w formie graficznej oraz zestawie tabelarycznych, zestawiono wartoci najistotniejszych, dla porówna dwóch gruntów, wielkoci takich jak: sklad granulometryczny (rys. 1), charakterystyki krzywych uziarnienia (tab. 1), wybrane wlaciwoci fizyczne, np. gsto nasypowa, barwa (pkt. 2), parametry mechaniczne, takie jak wytrzymalo na cinanie, kt tarcia wewntrznego i kohezja (rys. 2 i 3, tab. 2). Istotnym osigniciem prowadzonych bada bylo uzyskanie polskiego zamiennika gruntu ksiycowego, którego jednostkowy koszt wytworzenia jest wielokrotnie mniejszy od jednostkowego kosztu zakupu gruntu wzorcowego. Opracowany, polski analog gruntu ksiycowego AGK-2010 (zgloszony do Urzdu Patentowego w 2011 r.) zostal z powodzeniem wdroony w testach penetratora KRET w Centrum Bada Kosmicznych Polskiej Akademii Nauk w Warszawie. Slowa kluczowe: regolit ksiycowy, analog regolitu ksiycowego, analog gruntu ksiycowego Denotations cs d R2 s o f s ­ ­ ­ ­ ­ ­ ­ ­ cohesion, kPa, mesh, m, determination coefficient, standard deviation, kg/l, soil bulk density, kg/l, normal stress, kPa, shear strength, kPa, inner friction angle, o. Introduction The first Polish lunar soil analog, labeled AGK-2010, was designed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków (AGH-UST) in co-operation with the Space Research Centre, Polish Academy of Sciences in Warsaw (SRC PAS). The objective of the investigations was to minimize the cost of tests of a penetrator KRET performed by SRC PAS (Seweryn et al., 2011), which was prepared for tests on the Moon surface. During the tests, the American lunar analog was to be substituted by a Polish lunar regolith analog. The soil CHENOBI and JSC produced as in the U.S.A. as analogs of lunar soil collected by Apollo 17 was used as references (Rybus, 2009; Sibille et al., 2006). Among the basic properties, the values of which were compared when working on the Polish counterpart of lunar regolith analog CHENOBI were: grain-size distribution, physical properties (bulk density, colour), mechanical properties (shear strength, inner friction angle, cohesion), (PN-EN ISO 14688-1, 2006). It was important for the study to know that the grains of the lunar regolith mineral were sharp-edged (Rybus, 2009; Sibille et al., 2006). The results of analyses of reference lunar regolith analog CHENOBI sample and the Polish lunar soil analog AGK-2010 were compared. 1. Grain-size distribution The grain-size distribution for the lunar regolith analog CHENOBI and Polish lunar soil analog AGK-2010 was determined with the use of the sieve method in line with PN-EN 933-1 (2000). The reference grain-size curves were presented in Fig. 1. 100 90 Grain-size content < d, % 80 70 60 50 40 30 20 10 0 10 100 Mesh d, m Fig. 1. Grain-size distribution plot: lunar regolith analog CHENOBI ­ dashed line; lunar soil analog AGK-2010 ­ solid line (Bednarz, 2009, 2011) CHENOBI AGK 2010 The values of specific granulation plots, determined in accordance with PN-EN ISO 14688-2 (2006), are listed in table 1. TABLE 1 Characteristic of grain-size distribution of lunar regolith analog CHENOBI and lunar soil analog AGK-2010 (Bednarz et al., 2009, 2011) Soil Uniformity coefficient, Cu Curvature, Cc CHENOBI AGK-2010 The analysis of grain size distribution and granulation curves revealed that soils compared in line with PN-EN ISO 14688-2 (2006) are single-fraction clayey sands (siSa). 2. Physical properties The bulk density of analyzed soils was determined according to with the standard PN-EN 1097-3 (2000). As a result the following bulk density values were obtained: o = 1.314 kg/l ­ for lunar regolith analog CHENOBI, (standard deviation s = 0.0067 kg/l), o = 1.295 kg/l ­ for lunar soil analog AGK-2010, (standard deviation s = 0.0097 kg/l). The value of bulk density for soil AGK-2010 is lower than for lunar regolith analog CHENOBI only by about 1.45%. The authors used a selection of raw minerals for making lunar soil analog AGK-2010. As a result they obtained a multicomponent soil of grey-light grey color, resembling that of reference soil (Bednarz et al., 2009; Kömle et al., 2008). 3. Mechanical properties The mechanical properties of reference soil and the worked out lunar soil analog AGK2010 were compared in compliance with standard PN-B04481:1988 (1988), using the ground shear tests. The plots of shear tests values f vs. changes of normal stresses are presented in figs. 2 and 3. As a result of the tests, the values of internal friction angle s and cohesion cs were determined (figs. 2 and 3, tab. 2). Shear strength f , kPa Normal stress cs = 3,78 kPa o s = 37,27 CHENOBI , kPa Fig. 2. Shear strength of lunar regolith analog CHENOBI (Bednarz, 2009, 2011): cohesion cs = 3.78 kPa; inner friction angle s = 37.27° 350 , kPa 300 250 200 150 100 50 0 0 100 200 300 , kPa 400 500 AGK 2010 Shear strength cs = 3,85 kPa s = 37,67 Normal stress Fig. 3. Shear strength of lunar soil analog AGK-2010: (Bednarz, 2009, 2011): cohesion cs = 3.85 kPa; inner friction angle s = 37.67° TABLE 2 Mechanical properties of lunar regolith analogs CHENOBI and lunar soil analog AGK-2010 (Bednarz, 2009, 2011) Soil Trend line equation Determination coefficient R2 Cohesion cs, kPa Inner friction angle s , ° CHENOBI AGK-2010 f = 0.76 + 3.78 f = 0.77 + 3.85 The obtained courses for f = f () and values of cohesion cs and inner friction angle s show to a resemblence of analyzed mechanical properties of compared soils. 4. Economical aspect Considerable reduction of cost of making the lunar soil analog AGK-2010 was obtained by using components appearing in Polish geological conditions and/or components produced by home raw mineral producers. As a result, the cost of 1 kg of lunar soil analog AGK-2010 made in Polish conditions was many times lower than the price of 1 kg of lunar regolith analog CHENOBI. This aspect was of special importance in a situation when several tons of analog have to be used. 5. Conclusions 1. Investigations carried out at the Faculty of Drilling, Oil and Gas AGH University of Science and Technology in Kraków resulted in working out lunar soil analog AGK-2010, having similar properties as lunar regolith analog CHENOBI, frequently used in researches all over the World. 2. The lunar regolith analog AGK-2010 is a variant of lunar soil substitute, which can be modified if new properties of lunar soil are found. 3. It was important to produce a Polish counterpart of lunar soil, the unit cost of which was many times lower than the price of reference lunar soil. 4. The Polish lunar soil analog AGK-2010 (patent application of 2011) was successfully implemented during tests on penetrator KRET in the Space Research Center, Polish Academy of Sciences in Warsaw. Publication realized within contract no. 11.11.190.555 Publication realized within contract no. 4.4.190.2007

Journal

Archives of Mining Sciencesde Gruyter

Published: Jun 1, 2013

There are no references for this article.